Impact of Temperature Change on the Fall Armyworm (Spodoptera frugiperda) under Global Climate Change

Authors

  • Muhammad Talha Faryad Department of Entomology, University of Agriculture Faisalabad, Pakistan
  • Faizan Ejaz Department of Entomology, University of Agriculture Faisalabad, Pakistan
  • T Rajendran Department of Social Sciences, Agricultural College and Research Institute (TNAU) Killikulam, Vallanadu, Thoothukudi, 628252, Tamil Nadu, India
  • Muhammad Sohaib Department of Entomology, University of Agriculture Faisalabad, Pakistan
  • Rana Usama Khalid Department of Entomology, University of Agriculture Faisalabad, Pakistan

DOI:

https://doi.org/10.8726/syv2b756

Keywords:

Spodoptera frugiperda, fluctuating temperature, temperature tolerance, pest management program

Abstract

Originally from the tropical and subtropical areas of the Western Hemisphere, the autumn armyworm (FAW; Spodoptera frugiperda; J. E. Smith, 1797) has recently extended its range to include considerable portions of the America, Africa, Asia, and Oceania. The pest's great invading tendency and high yearly expense to control it are particularly problematic. Herbivorous insects are very sensitive to temperature changes. Several studies suggest that the damage to crops, such as an enhanced developmental rate that increases intake at higher temperatures, may be influenced by the temperature, which affects the poikilo-thermal FAW's geographic spread, phenology, and natural enemies. The FAW is thought to modulate gene expression in response to environmental changes at high temperatures, leading to increased viability and invasion potential. In light of this, the purpose of this paper is to review and critically evaluate the ways in which indicators of development, relationships between the FAW and its natural enemies, and temperature tolerance vary across the FAW's developmental stage when subjected to varying degrees of heat and cold stress. On this basis, we talk about more eco-friendly and cost-effective control measures, we present future climate change challenges, and we offer statistical basics and instrumental guidance significance for informing FAW pest forecasting, risk analyses, and a global management program for effective control.

References

Yadav MR, Choudhary M, Singh J, Lal MK, Jha PK, Udawat P, Gupta NK, Rajput VD, Garg NK, Maheshwari C, Hasan M. Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. International Journal of Molecular Sciences. 2022 Mar 4;23(5):2838.

Arora, R.; Dhawan, A. Integrated Pest Management; Scientific Publisher: Rajasthan, India, 2013.

Forster J, Hirst AG, Woodward G. Growth and development rates have different thermal responses. The American Naturalist. 2011 Nov 1;178(5):668-78.

Forster J, Hirst AG, Woodward G. Growth and development rates have different thermal responses. The American Naturalist. 2011 Nov 1;178(5):668-78.

Stinner RE, Butler GD, Bacheler JS, Tuttle C. SIMULATION OF TEMPERATURE-DEPENDENT DEVELOPMENT IN POPULATION DYNAMICS MODELS12. The Canadian Entomologist. 1975 Nov;107(11):1167-74.

Logan JA, Wollkind DJ, Hoyt SC, Tanigoshi LK. An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology. 1976 Dec 1;5(6):1133-40.

Sharpe PJ, DeMichele DW. Reaction kinetics of poikilotherm development. Journal of theoretical biology. 1977 Feb 21;64(4):649-70.

ZALUCKI MP, FURLONG MJ. Forecasting Helicoverpa populations in Australia: a comparison of regression based models and a bioclimatic based modelling approach. Insect Science. 2005 Feb;12(1):45-56.

Fonseca-Medrano M, Specht A, Silva FA, Otanásio PN, Malaquias JV. The population dynamics of three polyphagous owlet moths (Lepidoptera: Noctuidae) and the influence of meteorological factors and ENSO on them. Revista Brasileira de Entomologia. 2020 Jan 13;63:308-15.

Montezano DG, Sosa-Gómez DR, Specht A, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SD, Peterson JA, Hunt TE. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African entomology. 2018 Sep 1;26(2):286-300.

Ramasamy M, Das B, Ramesh R. Predicting climate change impacts on potential worldwide distribution of fall armyworm based on cmip6 projections. Journal of Pest Science. 2022 Mar;95(2):841-54.

Kumela T, Simiyu J, Sisay B, Likhayo P, Mendesil E, Gohole L, Tefera T. Farmers' knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. International Journal of Pest Management. 2019 Jan 2;65(1):1-9.

Zhou C, Shi Z, Kaner J. Life Cycle Analysis for Reconstituted Decorative Lumber from an Ecological Perspective: A Review. BioResources. 2022 Jul 1;17(3).

National Agro-Tech Extension and Service Center. Prediction of the occurrence trend of Spodoptera frugiperda in spring. Agrochemicals 2022;61:373.

Feeny P. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology. 1970 Jul;51(4):565-81.

MacLean Jr SF. Life cycles and the distribution of psyllids (Homoptera) in arctic and subarctic Alaska. Oikos. 1983 May 1:445-51.

Luginbill, P. The fall armyworm. USDA Tech. Bull. 1928;34:92.

Smith, J.E.; Abbott, J. The Natural History of the Rarer Lepidopterous Insects of Georgia Including Their Systematic Characters, the Particulars of Their Several Metamorphoses, and the Plants on Which They Feed; Collected from the Observation of Mr. John Abbot, Many years Resident in That Country; The Lepidopterists’ News: London, UK, 1797.

Glover, T. Insects Frequenting the Cotton-Plant; U. S. Commissioner of Patents for the Year 1855. Agriculture; Cornelius Wendell, Printer: Washington, DC, USA, 1856; pp. 64–115.

Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith)(Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PloS one. 2016 Oct 27;11(10):e0165632.

Guo J, Zhao J, He K, Zhang F, Wang Z. Potential invasion of the crop-devastating insect pest fall armyworm Spodoptera frugiperda to China. Plant Protection. 2018;44(6):1-0.

Kalleshwaraswamy CM, Asokan R, Swamy HM, Maruthi MS, Pavithra HB, Hegbe K, Navi S, Prabhu ST, Goergen GE. First report of the fall armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae), an alien invasive pest on maize in India.

Farmer, B. Fall Armyworm Marches on Aspest That Devastated African Crops Spreads in Asia. The Telegraph. 2019. Available online: https://www.telegraph.co.uk/global-health/climate-and-people/fall-armyworm-marches-pest-devastated-africancrops-spreads/ (accessed on 25 September 2022).

Jiang YY, Liu J, Xie MC, Li YH, Yang JJ, Zhang ML, Qiu K. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Prot. 2019;45(6):10-9.

Wu QL, He LM, Shen XJ, Jiang YY, Liu J, Hu G, Wu KM. Estimation of the potential infestation area of newly-invaded fall armyworm Spodoptera frugiperda in the Yangtze River Valley of China. Insects. 2019 Sep 13;10(9):298.

Yan W, Yang S, Wang Y, Zheng Q, Zhang Z, Xu H. Comparison of the effectiveness of chemical and biological agents for the emergency control of Spodoptera frugiperda in the field. Chinese Journal of Applied Entomology. 2019;56(4):788-92.

Zhang L, Jin MH, Zhang DD, Jiang YY, Liu J, Wu KM, Xiao YT. Molecular identification of invasive fall armyworm Spodoptera frugiperda in Yunnan Province. Plant protection. 2019;45(2):19-24.

Jing DP, Guo JF, Jiang YY, Zhao JZ, Sethi A, He KL, Wang ZY. Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Insect Science. 2020 Aug;27(4):780-90.

Zhang Z, Zheng Q, Zhang YH, Liu J, Yin XT, Tang QB, Li J, Yuan Y, Li XR, Zhu X. Cold hardiness of laboratory populations of Spodoptera frugiperda. Plant Protect. 2019;45:43-9.

Xie MH, Zhong YZ, Chen HL, Lin LL, Zhang GL, Xu LN, Wang ZY, Zhang JP, Zhang F, Su WH. Potential overwintering ability of fall armyworm Spodoptera frugiperda (JE Smith) in Anhui Province. Plant Protection. 2020;46:236-41.

Li XJ, Wu MF, Ma J, Gao BY, Wu QL, Chen AD, Liu J, Jiang YY, Zhai BP, Early R, Chapman JW. Prediction of migratory routes of the invasive fall armyworm in eastern China using a trajectory analytical approach. Pest Management Science. 2020 Feb;76(2):454-63.

Jiang YY, Liu J, Wu QL, Ciren ZG, Zeng J. Investigation on winter breeding and overwintering areas of Spodoptera frugiperda in China. Plant Prot. 2021;47:212-7.

Westbrook JK, Nagoshi RN, Meagher RL, Fleischer SJ, Jairam S. Modeling seasonal migration of fall armyworm moths. International journal of biometeorology. 2016 Feb;60(2):255-67.

Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecological modelling. 2000 Dec 5;135(2-3):147-86.

Ahmed SE, McInerny G, O'Hara K, Harper R, Salido L, Emmott S, Joppa LN. Scientists and software–surveying the species distribution modelling community. Diversity and Distributions. 2015 Mar;21(3):258-67.

Zacarias, D.A. Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenario. Clim. Chang. 2020, 161, 555–566.

Ramasamy, M.; Das, B.; Ramesh, R. Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections. J. Pest Sci. 2021, 95, 841–854.

Lin, W.; Xu, M.F.; Quan, Y.B.; Liao, L.; Gao, L. Potential geographic distribution of Spodoptera frugiperda in China based on MaxEnt model. Plant Quar. 2019, 33, 69–73.

Qin, Y.J.; Lan, S.; Zhao, Z.H.; Sun, H.Y.; Zhu, X.M.; Yang, P.Y.; Li, Z.H. Potential geographical distribution of the fall armyworm in China. Plant Protect. 2019, 45, 43–47+60.

Wang, R.L.; Jiang, C.X.; Guo, X.; Chen, D.D.; You, C.; Zhang, Y.; Wang, M.T.; Li, Q. Potential distribution of (J. E. Smith) in China and the major factors influencing distribution. Glob. Ecol. Conserv. 2020, 21, e00865.

Yi, Y.J.; Cheng, X.; Yang, Z.F.; Zhang, S.H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269.

Zhang, H.T.; Luo, D.; Mu, X.D.; Xu, M.; Wei, H.; Luo, J.R.; Zhang, J.E.; Hu, Y.C. Predicting the potential suitable distribution area of the apple snail Pomacea canaliculata in China based on multiple ecological niche models. Chin. J. Appl. Ecol. 2016, 27, 1277–1284.

Urbani, F.; D’Alessandro, P.; Biondi, M. Using Maximum Entropy Modeling (MaxEnt) to predict future trends in the distribution of high altitude endemic insects in response to climate change. Bull. Insectol. 2017, 70, 189–200.

Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 2006, 190, 231–259.

Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J.; Gordon, A.; Kujala, H.; Lentini, P.E.; Wintle, B.A. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 2015, 24, 276–292.

Garcia, A.G.; Ferreira, C.P.; Godoy, W.A.C.; Meagher, R.L. A computational model to predict the population dynamics of Spodoptera frugiperda. J. Pest Sci. 2019, 92, 429–441.

Prasanna, B.M.; Huesing, J.E.; Eddy, R.; Peschke, V.M. Fall Armyworm in Africa: A Guide for Integrated Pest Management; CAB International: Wallingford, UK, 2018.

Capinera, L.J. Fall armyworm, S. frugiperda (J. E. Smith) (Insecta: Lepidoptera: Noctuidae); Featured Creatures from the Entomology and Nematology Department, University of Florida. Publication No. EENY-98; UF/IFAS Extension: Gainesville, FL, USA, 1999.

Simmons, A.M. Effects of constant and fluctuating temperatures and humidities on the survival of pupae (Lepidoptera: Noctuidae). Fla. Entomol. 1993, 76, 333–340.

Walton, W.R.; Luginbill, P. The Fall Armyworm or “Grass Worm”, and Its Control; U.S. Dept. of Agriculture, Farmers’ Bulletins: Washington, DC, USA, 1916; Volume 752, p. 16.

Ashok, K.V.; Balasubramani, J.S.; Kennedy, V.; Geethalakshmi, P.; Jeyakumar, N.; Sathiah. Effect of elevated temperature on the population dynamics of fall armyworm. J. Environ. Biol. 2021, 42, 1098–1105.

Lu, Z.H.; He, S.Q.; Yan, N.S.; Zhao, W.J.; Yao, W.F.; Chen, Y.P.; Yang, T.; Jiang, Y.Y.; Gui, F.R. Effects of temperatures on the development and reproduction of fall armyworm (Spodoptera frugiperda Smith). Plant Protect. 2019, 45, 27–31+53.

Plessis, H.D.; Schlemmer, M.L.; Berg, J.V.D. The Effect of Temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2020, 11, 228.

Zhang, H.M.; Yin, Y.Q.; Zhao, X.Q.; Li, X.Y.; Wang, Y.; Liu, Y.; Chen, F.S.; Sheng, A.D. The growth and development characteristics of Spodoptera frugiperda under different temperature conditions. Environ. Entomol. 2020, 42, 52–59.

Kebede, M. Outbreak, distribution and management of fall armyworm, J.E. Smith in Africa: The status and prospects. Acad. Agric. J. 2018, 3, 551–568.

Sparks, A.N. A Review of the Biology of the Fall Armyworm. Fla. Entomol. 1979, 62, 82–87.

Wang, L.; Chen, K.W.; Zhong, G.H.; Xian, J.D.; Lu, Y.Y. Progress for occurrence and management and the strategy of the fall armyworm Spodoptera frugiperda (Smith). J. Environ. Entomol. 2019, 41, 479–487.

Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Chang. Biol. 2002, 8, 1–16.

Dell, D.; Sparks, T.H.; Dennis, R.L.H. Climate change and the effect of increasing spring temperatures on emergence dates of the butterfly Apatura iris (Lepidoptera: Nymphalidae). Eur. J. Entomol. 2005, 102, 161–167.

Forrest, J.R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 2016, 17, 49–54.

Sibly, R.M.; Atkinson, D. How rearing temperature affects optimal adult size in ectotherms. Funct. Ecol. 1994, 8, 486–493.

Díaz-lvarez, E.A.; Martínez-Zavaleta, J.P.; López-Santiz, E.E.; Barrera, E.D.L.; Larsen, J.; Del-Val, E. Climate change can trigger fall armyworm outbreaks: A developmentals response experiment with two Mexican maize landraces. Int. J. Pest Manag. 2021.

Vickery, R.A. Studies on the fall army worm in the Gulf coast district of Texas. USDA Tech. Bull. 1929, 138, 10–64.

Isenhour, D.J.; Wiseman, B.R.; Widstrom, N.W. Fall Armyworm (Lepidoptera: Noctuidae) Feeding Responses on Corn Foliage and Foliage/Artificial Diet Medium Mixtures at Different Temperatures. J. Econ. Entomol. 1985, 78, 328–332.

Foster, R.E.; Cherry, R.H. Survival of fall Armyworm, Spodoptera frugiperda, (Lepidoptera: Noctuidae) exposed to cold temperatures. Fla. Entomol. 1987, 70, 419–422.

Xie, D.J.; Zhang, L.; Cheng, Y.X.; Jiang, Y.Y.; Liu, J.; Jiang, X.F. Effects of temperature on flight capacity of the fall armyworm, Spodoptera frugiperda. Plant Protect. 2019, 45, 13–17.

Zhang, H.M.; Wang, Y.; Yin, Y.Q.; Li, X.Y.; Chen, F.S.; Shen, A.D. Effects of shorts-term high temperature in egg and pupal stages on the growth and development of fall armyworm Spodoptera frugiperda. J. Plant Protect. 2020, 47, 831–838.

Jeffs, C.T.; Leather, S.R. Effects of extreme, fluctuating temperature events on life history traits of the grain aphid, Sitobionavenae. Entomol. Exp. Appl. 2014, 150, 240–249.

Chiu; Kuo, J.J.; Kuo, M.H. Stage-dependent effects of experimental heat waves on an insect herbivore. Ecol. Entomol. 2015, 40, 175–181.

Bürgi, L.P.; Mills, N.J. Ecologically relevant measures of the physiological tolerance of light brown apple moth, Epiphyas postvittana, to high temperature extremes. J. Insect Physiol. 2012, 58, 1184–1191.

Zhu, S.G.; Li, Z.H.; Wan, F.H. Effects of brief exposure to high temperature on survival and reproductive adaptation of Bemisia tabaci Q-biotype. Chin. Bull. Entomol. 2010, 47, 1141–1144.

Xiang, Y.Y.; Dai, R.T. Effects of brief exposure to high temperature on the survival and reproduction of Oryzaephilus surinamensis (Linnaeus) during the storage period of Lonicera japonica Thunb. Chin. J. Appl. Entomol. 2016, 53, 802–808.

Milano, P.; Filho, E.B.; Parra, J.R.P.; Cônsoli, F.L. Temperature effects on the mating frequency of Anticarsia gemmatalis Hüebner and (J. E. Smith) (Lepidoptera: Noctuidae). Neotrop. Entomol. 2008, 37, 528–535.

Simmons, A.M.; Marti, O.G. Mating by the Fall Armyworm (Lepidoptera: Noctuidae): Frequency, Duration, and Effect of Temperature. Environ. Entomol. 1992, 21, 371–375.

Pitre, H.N.; Hogg, D.B. Development of the fall armyworm on cotton, soybean and corn. J. Ga. Entomol. Soc. 1982, 18, 182–187.

Ali, A.; Luttrell, R.G.; Schneider, J.C. Effects of temperature and larval diet on development of the fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 1990, 83, 725–733.

Pashley, D.P. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): A sibling species complex? Ann. Entomol. Soc. Am. 1986, 79, 898–904.

Dumas, P.; Legeai, F.; Lemaitre, C.; Scaon, E.; Orsucci, M.; Labadie, K.; Gimenez, S.; Clamens., A.; Henri., H.; Vavre, F. (Lepidoptera: Noctuidae) host-plant variants: Two host strains or two distinct species? Genetica 2015, 143, 305–316.

Busato, G.R.; Grützmacher, A.D.; Garcia, M.S.; Giolo, F.P.; Zotti, M.J.; Bandeira, J.D.M. Exigências térmicas estimative do número de gerações dos biótipos “milho” e “arroz” de Spodoptera frugiperda. Pesqui. Agropecu. Bras. 2005, 40, 329–335.

Canas-Hoyos, N.; Márquez, E.J.; Saldamando-Benjumea, C.I. Heritability of wing size and shape of the rice and corn strains of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotrop. Entomol. 2016, 45, 411–419.

Pashley, D.P.; Martin, J.A. Reproductive incompatibility between host strains of the fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 1987, 80, 731–733.

Schofl, G.; Heckel, D.G.; Groot, A.T. Time-shifted reproductive behaviours among fall armyworm (Noctuidae: Spodoptera frugiperda) host strains: Evidence for differing modes of inheritance. J. Evolution. Biol. 2010, 22, 1447–1459.

Cruz-Esteban, S.; Rojas, J.C.; Sánchez-Guillén, D.; Cruz-López, L.; Malo, E.A. Geographic variation in pheromone component ratio and antennal responses, but not in attraction, to sex pheromones among fall armyworm populations infesting corn in Mexico. J. Pest Sci. 2018, 91, 973–983.

Wu, Q.L.; Jiang, Y.Y.; Hu, G.; Wu, K.M. Analysis on spring and summer migration routes of fall armyworm (Spodoptera frugiperda) from tropical and southern subtropical zones of China. Plant Protect. 2019, 45, 1–9.

Li, X.J.; Wu, M.F.; Ma, J.; Gao, B.Y.; Wu, Q.L.; Chen, A.D.; Liu, J.; Jiang, Y.Y.; Zhai, B.P.; Early, R.; et al. Prediction of migratory routes of the invasion fall armyworm in eastern China using a trajectory analytical approach. Pest Manag. Sci. 2020, 76, 454–463.

Ma, J.; Wang, Y.P.; Wu, M.F.; Gao, B.Y.; Liu, J.; Lee, G.S.; Otuka, A.; Hu, G. High risk of the fall armyworm invading Japan and the Korran Peninsula via overseas migration. J. Appl. Entomol. 2019, 143, 911–920.

Rankin, M.A.; Burchsted, J.C.A. The cost of migration in insects. Ann. Rev. Entomol. 1992, 37, 533–559.

Westbrook, J.K. Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr. Comp. Biol. 2007, 48, 99–106.

Gao, Y.B.; Sun, Y.J.; Zhang, Q.; Sun, W.; Zhou, J.C. The spring migration behavior of the oriental armyworm, Mythimna separata, in northeastern China. J. Appl. Entomol. 2014, 51, 906–913.

Riley, J.R.; Cheng, X.N.; Zhang, X.X.; Reynolds, D.R.; Xu, G.M.; Smith, A.D.; Cheng, J.Y.; Bao, A.D.; Zhai, B.P. The long-distance migration of Nilaparvata lugens (Stål) (Delphacidae) in China: Radar observations of mass return flight in the autumn. Ecol. Entomol. 1991, 16, 471–489.

Keosentse, O.; Mutamiswa, R.; Du Plessis, H.; Nyamukondiwa, C. Developmental stage variation in Spodoptera frugiperda (Lepidoptera: Noctuidae) low temperature tolerance: Implications for overwintering. Austral Entomol. 2021, 60, 400–410.

Early, R.; Gonzalez, M.P.; Murphy, S.T.; Day, R. Forecasting the global extent of invasion of the cereal pest, the fall armyworm. NeoBiota 2018, 40, 25–50.

Ge, S.S.; He, L.M.; He, W.; Yan, R.; Wyckhuys, K.A.G.; Wu, K.M. Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda. J. Integr. Agr. 2021, 20, 707–714.

Chen, H.; Wang, Y.; Huang, L.; Xu, C.F.; Li, J.H.; Wang, F.Y.; Cheng, W.; Gao, B.Y.; Chapman, J.W.; Hu, G. Flight capability and the low temperature threshold of a Chinese field population of the fall armyworm. Insects 2022, 13, 422.

Yang, P.Y.; Zhu, X.M.; Guo, J.F.; Wang, Z.Y. Strategy and advice for managing the fall armyworm in China. Plant Protect. 2019, 45, 1–6.

Chen, W.B.; Li, Y.Y.; Wang, M.Q.; Liu, C.X.; Mao, J.J.; Chen, H.Y.; Zhang, L.S. Natural enemy insect resources of the fall armyworm Spodoptera frugiperda, their application status, and existing problems and suggestions. Chin. J. Biol. Control 2019, 34, 658–673.

Chen, W.B.; Li, Y.Y.; Wang, M.Q.; Liu, C.X.; Mao, J.J.; Chen, H.Y.; Zhang, L.S. Entomopathogen resources of the fall armyworm Spodoptera frugiperda, and their application status. Plant Protect. 2019, 45, 1–9+19.

Parra, J.R.P.; Zucchi, R.A.; Neto, S.S. Biological control of pests through egg parasitoids of the genus Trichogramma and/or Trichogrammatoidea. Memórias Inst. Oswaldo Cruz 1987, 82, 153–160.

Wengrat, A.P.; Coelho Junior, A.; Parra, J.R.P.; Takahashi, T.A.; Foerster, L.A.; Corrêa, A.S.; Polaszek, A.; Johnson, N.F.; Costa, V.A.; Zucchi, R.A. Integrative taxonomy and phylogeography of Telenomus remus (Scelionidae), with the first record of natural parasitism of Spodoptera spp. in Brazil. Sci. Rep. 2021, 11, 14110.

Colmenarez, Y.C.; Babendreier, D.; Wurst, F.R.F.; Vásquez-Freytez, C.L.; Bueno, A.D.F. The use of Telenomus remus (Nixon, 1937) (Hymenoptera: Scelionidae) in the management of Spodoptera spp. potential, challenges and major benefits. CABI Agric. Biosci. 2022, 3, 5.

Bueno, R.C.O.F.; Carneiro, T.R.; Pratissoli, D.; Bueno, A.F.; Fernandes, O.A. Biology and thermal requirements of Telenomus remus reared on fall armyworm Spodoptera frugiperda eggs. St. Maria 2008, 38, 1–6.

Bueno, R.C.O.F.; Bueno, A.F.; Parra, J.R.P.; Vieira, S.; Oliveira, L.J. Biological characteristics and parasitism capacity of Trichogramma pretiosum Riley (Hymenoptera, Trichogrammatidae) on eggs of Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae). Rev. Bras. Entomol. 2010, 54, 322–327.

Pomari, A.F.; Bueno, A.D.F.; Bueno, R.C.O.D.F.; Junior, A.D.O.M. Biological Characteristics and thermal requirements of the biological control agent Telenomus remus (Hymenoptera: Platygastridae) reared on eggs of different species of the genus Spodoptera (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 2012, 105, 73–81.

Grande, M.L.M.; Queiroz, A.P.; Gonçalves, J.; Hayashida, R.; Ventura, U.M.; Bueno, A.F. Impact of environmental variables on parasitism and emergence of Trichogramma pretiosum, Telenomus remus and Telenomus podisi. Neotrop. Entomol. 2021, 50, 605–614.

Schwartz, A.; Gerling, D. Adult biology of Telenomus remus (Hymenoptera: Scelionidae) under laboratory conditions. Entomophaga 1974, 19, 482–492.

Van Welzen, C.R.L.; Waage, J.K. Adaptive responses to local mate competition by parasitoid, Telenomus remus. Behav. Ecol. Sociobiol. 1987, 21, 359–363.

Zhang, X.Y.; Peng, Z.Q.; Lu, Y.Y.; Xian, J.D. Functional response of Eocanthecona furcellate (Wolff) on Spodoptera frugiperda (Smith) larvae at different temperatures. J. Environ. Entomol. 2022, 44, 273–280.

Zhao, X.Q.; Liu, Y.; Shi, W.P.; Li, X.Y.; Wang, Y.; Yin, Y.Q.; Zhang, H.M.; Chen, F.S.; Zhang, H.Y.; Liu, X.G.; et al. Predatory effect of Orius sauteri on Spodoptera frugiperda larvae. Plant Protect. 2019, 45, 79–83.

FAO. Integrated Management of the Fall Armyworm on Maize; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017.

Siebert, M.W.; Babock1, J.M.; Nolting, S.; Santos, A.C.; Adamczyk, J.J., Jr.; Neese, P.A.; King, J.E.; Jenkins, J.N.; Mccarty, J.; Lorenz, G.M. Efficacy of Cry1F insecticidal protein in maize and cotton for control of fall armyworm (Lepidoptera: Noctuidae). Fla. Entomol. 2008, 91, 555–565.

Oliveira, R.S.D.; Oliveiraneto, O.B.; Moura, H.F.N.; Macedo, L.L.P.D.; Arraes, F.B.M.; Lucena, W.A.; Lourenco-Tessutti, I.T.; Barbosa, A.A.D.D.; Silva, M.C.M.D.; Grossi-de-Sa, M.F. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm and cotton boll weevil (Anthonomus grandis). Front. Plant Sci. 2016, 7, 165.

Lei, Y.Y.; Zhang, Y.P.; Xue, Z.H.; Wang, Y.H.; Huang, S.H.; Lv, L.H. Isolation and identification of a Beauveria bassiana isolate and its pathogenicity to Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Environ. Entomol. 2020, 42, 593–601.

Li, J.; Yang, L.; Zhao, Y.M.; He, Y.N.; He, M.; Wu, Z.L.; Dai, Y.H. Screening test of 8 fungicides against Spodoptera frugiperda in maize in Hongta District of Yuxi City. Buoetin Agric. Sci. Technol. 2021, 8, 79–80.

Yang, Z.R.; Chai, K.R.; Mei, G.Z.; Dai, J.T. Field trial of Metarhizium anisopliae CQMa421 mixed with other fungicides against fall armyworm. Hubei Plant Protect. 2021, 3, 17–19.

Yu, Y.H.; Long, X.Z.; Zeng, X.R.; Wei, D.W.; Zeng, T. Biological characteristics of a strain of Metarhizium that is highly pathogenic to Dorysthenes granulosus. Chin. J. Appl. Entomol. 2014, 51, 73–79.

Shi, W.P.; Li, A.M.; Shi, Y.J.; Shen, J. Effects on entomopathogens on host behavior. Acta Microbiol. Sin. 2018, 58, 1049–1063.

Hou, Y.; Xia, Y.F.; Xu, J.Q.; Liu, F.F.; Lin, X.M.; Du, S.F. Identification and biological characteristics of a Metarhizium strain and its virulence again oriental migratory locust. Chin. J. Biol. Contr. 2015, 31, 333–339.

Huang, P.; Yao, J.A.; Yu, D.Y. Biological characteristics of Metarhizium anisopliae FM-03 and its infection against Planococcus citri. Chin. J. Biol. Control 2018, 34, 858–865.

Aizawa, K. The Nature of Infections Caused by Nuclear-Polyhedrosis Viruses; Academic Press: New York, NY, USA, 1963.

Remillet, M.; Silvain, J.F. Noctuidonema guyanense n. g., n. sp. (Nematoda: Aphelenchoidi-dae) ectoparasite de noctuelles du genre Spodoptera (Lepidoptera: Noctuidae). Rev. Nematol. 1988, 11, 21–24.

Simmons, A.M.; Rogers, C.E. Temperature and humidity effects on Noctuidonema (Nematoda: Aphelenchoididae), an ectoparasite of adult (Lepidoptera: Noctuidae), and transfer success during host mating. Ann. Entomol. Soc. Am. 1990, 6, 1084–1087.

Randall, M.G.M. The dynamics of an insect population throughout its altitudinal distribution: Coleophora alticolella (Lepidoptera) in northern England. J. Anim. Ecol. 1982, 51, 993–1016.

Kang, L.; Chen, B.; Wei, J.N.; Liu, T.X. Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Ann. Rev. Entomol. 2009, 54, 127–145.

Martin, T.L.; Huey, R.B. Why “suboptimal” is optimal: Jensen’ sinequality and ectotherm thermal preferences. Am. Nat. 2008, 171, 102–118.

Chang, X.Q.; Lv, L.; Wan, P.; Xu, D.; Luo, H.G.; Li, W.J.; Zhang, S. Preliminary study on the overwintering of Spodoptera frugiperda in Hubei province. Plant Protect. 2022, 48, 116–120+139.

Zhang, T.Q.; Zhang, L.; Cheng, Y.X.; Jiang, X.F. Study on the cold resistance of the fall armyworm, Spodoptera frugiperda. Plant Protect. 2021, 47, 176–181.

Pair, S.D.; Raulston, J.R.; Westbrook, J.K.; Wolf, W.W.; Adams, S.D. Fall armyworm (Lepidoptera: Noctuidae) outbreak originating in the lower Rio-Grande Valley, 1989. Fla. Entomol. 1991, 74, 200–213.

Jing, X.H.; Kang, L. Overview and evaluation of research methodology for insect cold hardiness. Entomol. Knowl. 2004, 41, 7–10.

Nedved, O. Chill tolerance in the tropical beetle Stenotarsus rotundus. Cryo Lett. 2000, 21, 25–30.

Turnock, W.J.; Fields, P.G. Winter climates and cold hardiness in terrestrial insects. Eur. J. Entomol. 2005, 102, 561–576.

Yao, M.S.; Meng, J.Y.; Yang, C.L.; Zhang, C.Y. cDNA cloning and expression profiling of the heat shock prote in Hsc70 gene and its response to different environmental stresses in fall armyworm Spodoptera frugiperda. J. Plant Protect. 2020, 47, 797–806.

Zhou, L.; Meng, J.Y.; Yang, C.L.; Li, J.; Hu, C.X.; Zhang, C.Y. Cloning of heat shock protein gene SfHsp90 and its expression under high and low temperature and UV-A stresses in Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Entomol. Sini. 2020, 63, 533–544.

Samanta, S.; Barman, M.; Chakraborty, S.; Banerjee, A.; Tarafdar, J. Involvement of small heat shock proteins (sHsps) in developmental stages of fall armyworm, and its expression pattern under abiotic stress condition. Heliyon 2021, 7, e06906.

Liang, Y.J.; Zhang, T.; Li, C.; Zhi, J.R. Molecular cloning and temporal-spatial expression profiling of trehalose-6-phosphate synthase gene in Spodoptera frugiperda (Lepidoptera: Noctuidae) and iits response to temperature stress. Acta Entomol. Sini. 2021, 64, 1417–1426.

Shang, D.; Yang, M.F.; Yu, X.F.; Chen, Y.C.; Tian, T.A. Spatiotemporal expression of CYP4G15 and CYP4L4 and their response to high and low temperature stress in Spodoptera frugiperda. Chin. J. App. Entomol. 2021, 58, 664–671.

Ritossa, F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 1962, 18, 571573.

Parsell, D.A.; Lindquist, S. The function of heat-shock proteinsin stress tolerance: Degradation and reactivation of damaged proteins. Ann. Rev. Genet. 1993, 27, 437–496.

Zhao, L.; Jones, W.A. Expression of heat shock protein genes in insect stress responses. Invertebr. Surviv. J. 2012, 9, 93–101.

Yang, C.L.; Meng, J.Y.; Zhou, L.; Yao, M.S.; Zhang, C.Y. Identification of five small heat shock protein genes in and expression analysis in response to different environmental stressors. Cell Stress Chaperon. 2021, 26, 527–539.

Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Ann. Rev. Physiol. 1999, 61, 243–282.

Wei, G.S.; Zhang, Q.W.; Zhou, M.Z.; Wu, W.G. Characteristic response of the compound eyes of Helicoverpa armigera to light. Acta Entomol. Sin. 2002, 45, 323–328.

Sisay, B.; Tefera, T.; Wakgari, M.; Ayalew, G.; Mendesil, E. The Efficacy of Selected Synthetic Insecticides and Botanicals against Fall Armyworm, in Maize. Insects 2019, 10, 45.

Sharma, H.C. Global Warming and Climate Change: Impact on Arthropod Biodiversity, Pest Management, and Food Security. In Proceedings of the National Symposium on Perspectives and Challenges of Integrated Pest Management for Sustainable Agriculture, Solan, India, 19–21 November 2010; pp. 19–21.

Heeb, L.; Jenner, E.; Cock, M.J.W. Climate-smart pest management: Building resilience of farms and landscapes to changing pest threats. J. Pest Sci. 2019, 92, 951–969.

Adunola, M.P.; Fayeun, L.S.; Fadara, A.B. Impact of climate change on armyworm infestation on maize in Nigeria: A review. J. Plant Breed. Crop Sci. 2021, 13, 158–167.

Cheruiyot D, Midega CA, Pittchar JO, Pickett JA, Khan ZR. Farmers’ perception and evaluation of Brachiaria grass (Brachiaria spp.) genotypes for smallholder cereal-livestock production in East Africa. Agriculture. 2020 Jul 4;10(7):268.

Furlong MJ, Zalucki MP. Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions. Current opinion in insect science. 2017 Apr 1;20:39-44.

Hance T, van Baaren J, Vernon P, Boivin G. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu. Rev. Entomol.. 2007 Jan 7;52:107-26.

Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P, dos Santos AC, Omoto C. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop protection. 2014 Oct 1;64:150-8.

Niu Y, Qureshi JA, Ni X, Head GP, Price PA, Meagher Jr RL, Kerns D, Levy R, Yang X, Huang F. F2 screen for resistance to Bacillus thuringiensis Cry2Ab2-maize in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) from the southern United States. Journal of invertebrate pathology. 2016 Jul 1;138:66-72.

Lee MK, Walters FS, Hart H, Palekar N, Chen JS. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin. Applied and environmental microbiology. 2003 Aug;69(8):4648-57.

Gouffon CV, Van Vliet A, Van Rie J, Jansens S, Jurat-Fuentes JL. Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Applied and environmental microbiology. 2011 May 15;77(10):3182-8.

Ma CS, Zhang W, Peng Y, Zhao F, Chang XQ, Xing K, Zhu L, Ma G, Yang HP, Rudolf VH. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature communications. 2021 Sep 9;12(1):1-0.

Phiri F. Sambia’s Armyworm Outbreaks: Is Climate Change to Blame. Inter Press Service. http://www. ipsnews. net/2017/01/zambias-armyworm-outbreak-isclimate-change-to-blame.2017.

Downloads

Published

2022-12-01

Issue

Section

Review Articles

How to Cite

Impact of Temperature Change on the Fall Armyworm (Spodoptera frugiperda) under Global Climate Change. (2022). International Journal of Research and Advances in Agricultural Sciences, 1(2), 68-82. https://doi.org/10.8726/syv2b756

Similar Articles

1-10 of 32

You may also start an advanced similarity search for this article.