Mortierella Species as Beneficial Fungi for Enhancing Plant Growth in Agricultural Soils

Authors

  • Faiza Qadeer Department of Plant Pathology, Faculty of Crop Protection Sciences, The University of Agriculture Peshawar, Pakistan.
  • Hasan Alkhaza’leh Ph.D. Student in Land, Water, and Environment, Department of Lands, Water, and Environment, University of Jordan, Amman, Jordan
  • Muhammad Omer Department of Plant Pathology, Faculty of Crop Protection Sciences, The University of Agriculture Peshawar, Pakistan.

DOI:

https://doi.org/10.8726/jmxkg581

Keywords:

mycorrhizal, mortierella, agriculture, soil, growth, nutrient, sustainability, biodiversity, biocontrol.

Abstract

Agriculture, as the cornerstone of global sustenance, faces the dual challenge of increasing crop yields while minimizing environmental harm. The intricate interplay between plants and soil microorganisms, particularly fungi, has garnered significant attention for its potential to boost plant growth, enhance nutrient uptake, and combat soil-borne diseases. Among these soil microorganisms, Mortierella species have emerged as essential contributors to soil health and fertility. These fungi, known for their versatility and capacity to form mutualistic associations with a wide range of crops, hold the promise of transforming modern agriculture. Mortierella species stand as allies to sustainable agriculture, forging a harmonious alliance between crop productivity and ecological well-being. The review underscores the potential for Mortierella-based strategies to address the pressing challenges of food security and environmental sustainability. As agriculture evolves, the integration of Mortierella species promises a path toward a more sustainable and prosperous future.

References

Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis. Academic Press.

Smith, F. A., & Smith, S. E. (2011). What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant and Soil, 348(1-2), 63-79.

Miransari, M., & Smith, D. L. (2009). Plant hormones and seed germination. Environmental and Experimental Botany, 68(1), 1-6.

Gams, W., & Diederich, P. (1980). Mortierella as a polyphyletic genus. Sydowia, 33, 31-52.

Hoffmann, K., Pawłowska, J., Walther, G., Wrzosek, M., & de Hoog, G. S. (2013). The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia: Molecular Phylogeny and Evolution of Fungi, 30, 57-76.

White, M. M., James, T. Y., O'Donnell, K., Cafaro, M. J., Tanabe, Y., Sugiyama, J., ... & Hodge, K. (2006). Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia, 98(6), 872-884.

Gams, W., & Diederich, P. (1980). Mortierella as a polyphyletic genus. Sydowia, 33, 31-52.

Hoffmann, K., Pawłowska, J., Walther, G., Wrzosek, M., & de Hoog, G. S. (2013). The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia: Molecular Phylogeny and Evolution of Fungi, 30, 57-76.

Sánchez-Monedero, M. A., Moreno, B., Paredes, C., & Pérez-Espinosa, A. (2004). Microbiological and chemical parameters for evaluating the stability of fresh and composted sewage sludge. Chemosphere, 54(2), 153-162.

Selbmann, L., de Hoog, G. S., Mazzaglia, A., Friedmann, E. I., & Onofri, S. (2005). Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Studies in Mycology, 51, 1-32.

Rousk, J., Brookes, P. C., & Bååth, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75(6), 1589-1596.

Benny, G. L., & Smith, M. E. (2017). Altitude and temperature-dependent sporulation in Mortierella alpina. Mycologia, 109(4), 521-530.

Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis. Academic Press.

Stirling, G. R., & Wilkins, J. F. (2001). Suppression of plant-parasitic nematodes in soil from a sugarcane field suppressive to Meloidogyne spp. Journal of Nematology, 33(4), 197-207.

Kidd, S. E., & Halliday, C. L. (2012). A new species of Mortierella from the human respiratory tract. Fungal Biology, 116(4), 554-558.

Olander, L. P., & Vitousek, P. M. (2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49(2), 175-199.

Zarea, M. J., Hajinia, S., Karimi, N., Goltapeh, E. M., Rejali, F., & Varma, A. (2012). Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry, 45, 139-146.

Smith, S. E., & Smith, F. A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104(1), 1-13.

Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis. Academic Press.

Smith, F. A., & Smith, S. E. (2011). What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant and Soil, 348(1-2), 63-79.

Rousk, J., Brookes, P. C., & Bååth, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75(6), 1589-1596.

Miransari, M., & Smith, D. L. (2009). Plant hormones and seed germination. Environmental and Experimental Botany, 68(1), 1-6.

Stirling, G. R., & Wilkins, J. F. (2001). Suppression of plant-parasitic nematodes in soil from a sugarcane field suppressive to Meloidogyne spp. Journal of Nematology, 33(4), 197-207.

Kidd, S. E., & Halliday, C. L. (2012). A new species of Mortierella from the human respiratory tract. Fungal Biology, 116(4), 554-558.

Olander, L. P., & Vitousek, P. M. (2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49(2), 175-199.

Smith, S. E., & Smith, F. A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104(1), 1-13.

Zarea, M. J., Hajinia, S., Karimi, N., Goltapeh, E. M., Rejali, F., & Varma, A. (2012). Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry, 45, 139-146.

Smith, S. E., & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227-250.

Selvakumar, G., Kundu, S., Joshi, P., Nazim, S., Gupta, A. D., & Gupta, H. S. (2008). Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold-adapted bacterium from the Uttarakhand Himalayas. Indian Journal of Microbiology, 48(4), 396-399.

Jakobsen, I., Abbott, L. K., Robson, A. D., & Wheatley, R. E. (1992). Plant growth responses to vesicular-arbuscular mycorrhiza. V. Phosphate uptake by three plant species from field experiments. New Phytologist, 120(3), 517-524.

Smith, S. E., & Smith, F. A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104(1), 1-13.

Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis. Academic Press.

Smith, F. A., & Smith, S. E. (2011). What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant and Soil, 348(1-2), 63-79.

Rousk, J., Brookes, P. C., & Bååth, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75(6), 1589-1596.

Miransari, M., & Smith, D. L. (2009). Plant hormones and seed germination. Environmental and Experimental Botany, 68(1), 1-6.

Stirling, G. R., & Wilkins, J. F. (2001). Suppression of plant-parasitic nematodes in soil from a sugarcane field suppressive to Meloidogyne spp. Journal of Nematology, 33(4), 197-207.

Kidd, S. E., & Halliday, C. L. (2012). A new species of Mortierella from the human respiratory tract. Fungal Biology, 116(4), 554-558.

Olander, L. P., & Vitousek, P. M. (2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49(2), 175-199.

Smith, S. E., & Smith, F. A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104(1), 1-13.

Selvakumar, G., Kundu, S., Joshi, P., Nazim, S., Gupta, A. D., & Gupta, H. S. (2008). Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold-adapted bacterium from the Uttarakhand Himalayas. Indian Journal of Microbiology, 48(4), 396-399.

Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis. Academic Press.

Rousk, J., Brookes, P. C., & Bååth, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75(6), 1589-1596.

Selvakumar, G., Kundu, S., Joshi, P., Nazim, S., Gupta, A. D., & Gupta, H. S. (2008). Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold-adapted bacterium from the Uttarakhand Himalayas. Indian Journal of Microbiology, 48(4), 396-399.

Miransari, M., & Smith, D. L. (2009). Plant hormones and seed germination. Environmental and Experimental Botany, 68(1), 1-6.

Stirling, G. R., & Wilkins, J. F. (2001). Suppression of plant-parasitic nematodes in soil from a sugarcane field suppressive to Meloidogyne spp. Journal of Nematology, 33(4), 197-207.

Kidd, S. E., & Halliday, C. L. (2012). A new species of Mortierella from the human respiratory tract. Fungal Biology, 116(4), 554-558.

Olander, L. P., & Vitousek, P. M. (2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49(2), 175-199.

Smith, S. E., & Smith, F. A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104(1), 1-13.

Smith, F. A., & Smith, S. E. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227-250.

Smith, S. E., & Smith, F. A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104(1), 1-13.

Selvakumar, G., Kundu, S., Joshi, P., Nazim, S., Gupta, A. D., & Gupta, H. S. (2008). Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold-adapted bacterium from the Uttarakhand Himalayas. Indian Journal of Microbiology, 48(4), 396-399.

Jakobsen, I., Abbott, L. K., Robson, A. D., & Wheatley, R. E. (1992). Plant growth responses to vesicular-arbuscular mycorrhiza. V. Phosphate uptake by three plant species from field experiments. New Phytologist, 120(3), 517-524.

Smith, S. E., & Smith, F. A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104(1), 1-13.

Zarea, M. J., Hajinia, S., Karimi, N., Goltapeh, E. M., Rejali, F., & Varma, A. (2012). Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry, 45, 139-146.

Smith, S. E., & Smith, F. A. (2011). What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant and Soil, 348(1-2), 63-79.

Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis. Academic Press.

Smith, F. A., & Smith, S. E. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227-250.

Smith, S. E., & Smith, F. A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104(1), 1-13.

Selvakumar, G., Kundu, S., Joshi, P., Nazim, S., Gupta, A. D., & Gupta, H. S. (2008). Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold-adapted bacterium from the Uttarakhand Himalayas. Indian Journal of Microbiology, 48(4), 396-399.

Jakobsen, I., Abbott, L. K., Robson, A. D., & Wheatley, R. E. (1992). Plant growth responses to vesicular-arbuscular mycorrhiza. V. Phosphate uptake by three plant species from field experiments. New Phytologist, 120(3), 517-524.

Smith, S. E., & Smith, F. A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104(1), 1-13.

Rousk, J., Brookes, P. C., & Bååth, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75(6), 1589-1596.

Miransari, M., & Smith, D. L. (2009). Plant hormones and seed germination. Environmental and Experimental Botany, 68(1), 1-6.

Zarea, M. J., Hajinia, S., Karimi, N., Goltapeh, E. M., Rejali, F., & Varma, A. (2012). Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry, 45, 139-146.

Berruti, A., Lumini, E., Balestrini, R., & Bianciotto, V. (2016). Arbuscular mycorrhizal fungi as natural biofertilizers: let's benefit from past successes. Frontiers in Microbiology, 6, 1559.

Smith, S. E., & Smith, F. A. (2016). Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 48(1), 125-146.

Yang, Y., Mo, M., Guan, K., Li, H., & Ma, Y. (2012). Bacillus megaterium strain XTBG34 promotes plant growth by producing 2‐pentylfuran. Journal of Applied Microbiology, 113(6), 1171-1181.

Verma, J. P., Yadav, J., Tiwari, K. N., & Jaiswal, D. K. (2014). Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biology and Biochemistry, 70, 33-37.

Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., & Barea, J. M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37(1), 1-16.

Aloui, A., Mhadhbi, H., & Hassen, A. (2016). Impact of arbuscular mycorrhizal fungi on the nutritional status of chickpea grown on marginal soils under different water regimes. Crop and Pasture Science, 67(1), 24-31.

Downloads

Published

2023-12-01

Issue

Section

Review Articles

How to Cite

Mortierella Species as Beneficial Fungi for Enhancing Plant Growth in Agricultural Soils. (2023). International Journal of Research and Advances in Agricultural Sciences, 2(4), 1-13. https://doi.org/10.8726/jmxkg581

Similar Articles

1-10 of 43

You may also start an advanced similarity search for this article.