Vertical Farming and Urban Agriculture: A Review of the Current State and Future Prospects in Crop Production

Authors

  • Atika Iffat Department of Horticulture, Bahaudin Zakriya University Multan, Pakistan
  • Muhammad Umar Aslam International Agriculture University Tashkent Uzbekistan https://orcid.org/0009-0000-5545-4358
  • Masroor Ul Hassan Bari Department of Horticulture, University of Agriculture Peshawar, Pakistan
  • Luqman khan Institute of Biotechnology and Genetic Engineering, the University of Agriculture Peshawar, Pakistan
  • Shah Saud Department Agriculture, University of Swabi, Pakistan
  • Riaz Khan Deportment of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan

DOI:

https://doi.org/10.8726/3vkwjm55

Keywords:

vertical farming, urban agriculture, crop selection, cultivar development, water use efficiency, food security.

Abstract

Vertical farming and urban agriculture have emerged as innovative and sustainable solutions for addressing challenges associated with traditional agriculture, such as land and water scarcity, environmental pollution, and food security in urban areas. This paper provides an overview of the crop selection and cultivar development, as well as the environmental and social benefits of vertical farming and urban agriculture. Vertical farming offers several environmental benefits, including reduced water and land use, reduced agricultural runoff and pesticide use, and improved food security and nutrition in urban areas. Furthermore, urban agriculture initiatives, such as community gardens and urban farms, encourage local job creation and community engagement, serving as educational platforms and fostering a sense of belonging among residents. Continued research and innovation in vertical farming and urban agriculture are essential to achieving global food security and promoting sustainable urban development. Collaborative efforts among researchers, policymakers, industry stakeholders, and urban communities can drive the development of effective, sustainable, and scalable solutions for the future of food production.

References

Despommier D. The vertical farm: Feeding the world in the 21st century. St. Martin's Press; 2010.

Kozai T, Niu G, Takagaki M, editors. Plant factory: An indoor vertical farming system for efficient quality food production. Academic Press; 2015.

Mougeot LJA. Urban agriculture: Definition, presence, potentials, and risks. In: Bakker N, Dubbeling M, Guendel S, Sabel-Koschella U, de Zeeuw H, editors. Growing cities, growing food: Urban agriculture on the policy agenda. Feldafing, Germany: German Foundation for International Development (DSE); 2000. p. 1-42.

Smit J, Nasr J, Ratta A. Urban agriculture: Food, jobs and sustainable cities. New York, NY: United Nations Development Programme (UNDP); 1996.

Bailey GE. Vertical farming. New York, NY: Macmillan Company; 1915.

Benke K, Tomkins B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy. 2017;13(1):13-26. doi:10.1080/15487733.2017.1394054

Thomaier S, Specht K, Henckel D, Dierich A, Siebert R, Freisinger UB, et al. Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarming). Renewable Agriculture and Food Systems. 2015;30(1):43-54. doi:10.1017/S1742170514000143

Pearson LJ, Pearson L, Pearson CJ. Sustainable urban agriculture: Stocktake and opportunities. International Journal of Agricultural Sustainability. 2010;8(1-2):7-19. doi:10.3763/ijas.2010.0468

Jung Y, Lee HJ, Lee J, Kim H, Yoo Y, Ju YJ, et al. Vertical farming: A bibliometric analysis of the existing body of knowledge and future research directions. Sustainability. 2021;13(9):5190. doi:10.3390/su13095190

O'Sullivan ED, Rounsevell MDA, Bateman IJ, Challinor AJ. Reviewing the evidence base for the effects of urban agriculture on food security: A global meta-analysis. Global Food Security. 2021;29:100547. doi:10.1016/j.gfs.2021.100547

Specht K, Siebert R, Hartmann I, Freisinger UB, Sawicka M, Werner A, et al. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agriculture and Human Values. 2014;31(1):33-51. doi:10.1007/s10460-013-9448-4

Orsini F, Gasperi D, Marchetti L, Piovene C, Draghetti S, Ramazzotti S, et al. Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: The potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. Food Security. 2014;6(6):781-792. doi:10.1007/s12571-014-0389-6

Thomaier S, Specht K, Henckel D, Dierich A, Siebert R, Freisinger UB, et al. Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarming). Renewable Agriculture and Food Systems. 2015;30(1):43-54. doi:10.1017/S1742170514000143

Kalantari F, Tahir OM, Lahijani AM, Kalantari S. A review of vertical farming technology: A guide for implementation of building integrated agriculture in cities. Advanced Engineering Forum. 2017;24:76-91. doi:10.4028/www.scientific.net/AEF.24.76

Goldstein B, Hauschild M, Fernández J. Urban versus conventional agriculture, taxonomy of resource profiles: A review. Agronomy for Sustainable Development. 2016;36(1):9. doi:10.1007/s13593-015-0348-9

Grewal SS, Grewal PS. Can cities become self-reliant in food? Cities. 2012;29(1):1-11. doi:10.1016/j.cities.2011.06.003

Poulsen MN, Spiker ML, Winch PJ. Growing an urban oasis: A qualitative study of the perceived benefits of community gardening in Baltimore, Maryland. Culture, Agriculture, Food and Environment. 2014;36(2):69-82. doi:10.1111/cuag.12035

McClintock N. Cultivating (a) sustainability capital: Urban agriculture, ecogentrification, and the uneven valorization of social reproduction. Annals of the American Association of Geographers. 2018;108(2):579-590. doi:10.1080/24694452.2017.1365582

Koohafkan P, Altieri MA. Globally important agricultural heritage systems: A legacy for the future. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO); 2010.

Kellner M, Pritchard H, Vats A, Yang J, Patel N, Shah M, et al. The farm of the future: A blueprint for the deployment of AI in agriculture. AI Magazine. 2019;40(4):54-63. doi:10.1609/aimag.v40i4.2863

Cofie O, Kranjac-Berisavljevic G, Drechsel P. The use of human waste for peri-urban agriculture in Northern Ghana. Renewable Agriculture and Food Systems. 2005;20(2):73-80. doi:10.1079/RAF2005116

Tornaghi C, Dehaene M. The prefigurative power of urban political agroecology: Rethinking the urbanisms of agroecological transitions for food system transformation. Geoforum. 2020;114:35-48. doi:10.1016/j.geoforum.2020.07.005

Metson GS, Bennett EM, Elser JJ. The role of diet in phosphorus demand. Environmental Research Letters. 2012;7(4):044043. doi:10.1088/1748-9326/7/4/044043

Kozai T, Niu G, Takagaki M, editors. Plant factory: An indoor vertical farming system for efficient quality food production. San Diego, CA: Academic Press; 2015.

Larcher W. Physiological plant ecology: Ecophysiology and stress physiology of functional groups. Berlin, Germany: Springer Science & Business Media; 2003.

Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology. 2003;30(3):239-264. doi:10.1071/FP02076

Tewolde FT, Shiina K, Maruo T, Takagaki M, Kozai T, Yamori W. Improvement of energy use efficiency and productivity of lettuce by integration of the closed transplant production system with the plant factory. Biosystems Engineering. 2016;151:19-29. doi:10.1016/j.biosystemseng.2016.08.019

Alsanius BW, Bergstrand KJ, Hartmann R, Gharaie S, Wohanka W, Dorais M. Ornamental plants for sustainable indoor environments. Renewable Agriculture and Food Systems. 2019;34(6):546-556. doi:10.1017/S1742170518000387

Stanghellini C, Kempkes FL, Knies P. Evaporative cooling in greenhouses: Impact on microclimate and crop water use. Acta Horticulturae. 2010; (853):217-222. doi:10.17660/ActaHortic.2010.853.23

Dorais M. The use of supplemental lighting for vegetable crop production: light intensity, crop response, nutrition, cultural practices, and economics. Acta Horticulturae. 2003; (614):3-26. doi:10.17660/ActaHortic.2003.614.1

Taiz L, Zeiger E. Plant physiology. Sunderland, MA: Sinauer Associates; 2006.

Massa GD, Kim HH, Wheeler RM, Mitchell CA. Plant productivity in response to LED lighting. HortScience. 2008;43(7):1951-1956. doi:10.21273/HORTSCI.43.7.1951

Despommier D. The vertical farm: Feeding the world in the 21st century. New York, NY: Thomas Dunne Books; 2010.

Lin KS, Huang MY, Huang WD, Hsu MH, Yang ZW, Yang CM. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae. 2013;150:86-91. doi:10.1016/j.scienta.2012.10.002

Jones JB. Hydroponics: A practical guide for the soilless grower. Boca Raton, FL: CRC Press; 2004.

Treftz C, Omaye ST. Nutrient analysis of soil and soilless strawberries and raspberries grown in a greenhouse. Food and Nutrition Sciences. 2015;6(15):1452-1462. doi:10.4236/fns.2015.615150

Benke K, Tomkins B. Future food-production systems: vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy. 2017;13(1):13-26. doi:10.1080/15487733.2017.1394054

Kozai T. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proceedings of the Japan Academy, Series B. 2013;89(10):447-461. doi:10.2183/pjab.89.447

Aiking H. Future protein supply. Trends in Food Science & Technology. 2011;22(2-3):112-120. doi:10.1016/j.tifs.2010.04.005

Kellner M, Pritchard H, Vats A, Yang J, Patel N, Shah M, et al. The farm of the future: A blueprint for the deployment of AI in agriculture. AI Magazine. 2019;40(4):54-63. doi:10.1609/aimag.v40i4.2863

Barbosa GL, Gadelha FDA, Kublik N, Proctor A, Reichelm L, Weissinger E, et al. Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. International Journal of Environmental Research and Public Health. 2015;12(6):6879-6891. doi:10.3390/ijerph120606879

Sanjuan-Delmás D, Llorach-Massana P, Nadal A, Ercilla-Montserrat M, Muñoz P, Montero JI, et al. Environmental assessment of an integrated rooftop greenhouse for food production in cities. Journal of Cleaner Production. 2018;177:326-337. doi:10.1016/j.jclepro.2017.12.190

Albright LD, de Villiers D. Vertical farming: Does it really stack up? Economist. 2010 Dec 9;397(8718):161-163.

Zheng Y, Li Y, Li Y, Li H, Wang X. Current status and future directions for exploring germplasm resources to increase the yield and stress resistance of leafy vegetables in the era of vertical agriculture. Horticulture Research. 2020;7(1):1-11. doi:10.1038/s41438-020-0276-1

Rakocy JE, Bailey DS, Shultz RC, Thoman ES. Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system. Acta Horticulturae. 2004;648:63-69. doi:10.17660/ActaHortic.2004.648.8

Goddek S, Joyce A, Kotzen B, Burnell G. Aquaponics and hydroponics: A comparison in terms of water usage, plant growth and nutrient management. Water. 2015;7(9):5035-5052. doi:10.3390/w7095035

Li X, Liu S, Li J, Luo X. Comparison of different hydroponic systems for the growth of lettuce. HortTechnology. 2014;24(4):423-429. doi:10.21273/HORTTECH.24.4.423

Mahajan P, Dhawan M, Kumar P. Hydroponics: A potential technology for vertical urban farming. Journal of Crop Improvement. 2020;34(2):169-191. doi:10.1080/15427528.2019.1661873

Li T, Sivakumar S, Li Y. Aeroponic systems in agriculture. In: Li T, Sivakumar S, Li Y, editors. Sustainable Agriculture Reviews. Singapore: Springer; 2020. p. 27-51.

Gioeli D, de Pascale S, Santamaria P. Influence of aeroponic and hydroponic systems on growth and quality of strawberry runners. Acta Horticulturae. 2011;893:549-555. doi:10.17660/ActaHortic.2011.893.71

He L, Niu G, Lu J, Liu H. Effects of different nutrient solutions and fertilization methods on the growth and quality of lettuce in aeroponics. Journal of Plant Nutrition. 2019;42(7):831-841. doi:10.1080/01904167.2018.1533641

Baumann DN, Santini JB, Solano-Lopez C, Ray DT, Mekonnen ZA. Vertical farming using aeroponic technology. International Journal of Environmental Research and Public Health. 2021;18(7):3465. doi:10.3390/ijerph18073465

Savvas D, Gruda N. Application of soilless culture technologies in the modern greenhouse industry – A review. European Journal of Horticultural Science. 2018;83(5):280-293. doi:10.17660/eJHS.2018/83.5.1

Goddek S, Delaide B, Mankasingh U, Ragnarsdóttir KV, Jijakli MH, Thorarinsdottir R. Challenges of sustainable and commercial aquaponics. Sustainability. 2015;7(4):4199-4224. doi:10.3390/su7044199

Pantanella E, Cardarelli M, Colla G, Rea E, Marcucci A. Aquaponics vs hydroponics: Production and quality of lettuce crop. Acta Horticulturae. 2010;853:261-266. doi:10.17660/ActaHortic.2010.853.32

Somerville C, Cohen M, Pantanella E, Stankus A, Lovatelli A. Small-scale aquaponic food production. Rome: FAO Fisheries and Aquaculture Technical Paper; 2014.

Rakocy JE, Bailey DS, Shultz RC. Aquaponic production of crops and fish by the use of the recirculating aquaculture system. In: Proceedings of the Fifth International Symposium on Tilapia in Aquaculture; 2000 Oct 10-14; Rio de Janeiro, Brazil. New York: Food and Agriculture Organization of the United Nations; 2000. p. 404-421.

Endut A, Jusoh A, Ali N, Wan Nik WB, Hassan A, Ngadiman NH. A preliminary study on integrated vertical aquaponics system for high-rise building. Journal of Applied Sciences. 2012;12(22):2314-2320. doi:10.3923/jas.2012.2314.2320

Weigel D, Resh HM, Joyce A. Challenges and opportunities for aquaponics in the United States. Reviews in Aquaculture. 2015;7(4):283-293. doi:10.1111/raq.12087

Savvas D, Gruda N. Application of soilless culture technologies in the modern greenhouse industry – A review. European Journal of Horticultural Science. 2018;83(5):280-293. doi:10.17660/eJHS.2018/83.5.1

Grewal S, Grewal S, Srivastava RK. Urban vertical farming: A sustainable solution to feed the cities. In: Srivastava RK, Yadav A, Pandey P, editors. Sustainable urban agriculture and food systems: The role of microgardening. Boca Raton, FL: CRC Press; 2020. p. 67-87.

Resh HM. Hydroponic food production: A definitive guidebook for the advanced home gardener and the commercial hydroponic grower. Santa Barbara, CA: CRC Press; 2013.

Gómez-López VM, Ruzafa-Martínez M, Baños R, Pérez-Murcia MD, Bustamante MA, Moral R. Economic assessment of a small-scale vertical hydroponic farming system in Murcia, Spain. Water. 2021;13(4):448. doi:10.3390/w13040448

Kellner M, Pritchard H, Vats A, Yang J, Patel N, Shah M, et al. The farm of the future: A blueprint for the deployment of AI in agriculture. AI Magazine. 2019;40(4):53-63. doi:10.1609/aimag.v40i4.2897

Massa GD, Kim HH, Wheeler RM, Mitchell CA. Plant productivity in response to LED lighting. HortScience. 2008;43(7):1951-1956. doi:10.21273/HORTSCI.43.7.1951

Kozai T. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proceedings of the International Symposium on Advanced Technologies and Management for Innovative Greenhouses; 2014 Nov 4-7; Jeju Island, Korea. p. 3-16.

Hernández R, Kubota C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany. 2014;107:28-35. doi:10.1016/j.envexpbot.2014.05.004

Lin KH, Huang MY, Huang WD, Hsu MH, Yang ZW, Yang CM. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae. 2013;150:86-91. doi:10.1016/j.scienta.2012.10.002

Morrow RC. LED lighting in horticulture. HortScience. 2008;43(7):1947-1950. doi:10.21273/HORTSCI.43.7.1947

Matsuda R, Ohashi-Kaneko K, Fujiwara K, Goto E, Kurata K. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. Plant and Cell Physiology. 2004;45(12):1870-1874. doi:10.1093/pcp/pch210

Folta KM, Maruhnich SA. Green light: A signal to slow down or stop. Journal of Experimental Botany. 2007;58(12):3099-3111. doi:10.1093/jxb/erm130

Sánchez RA, Righini H, Herrera A, Montesano G, Piacentini RD. Diurnal variations in photosynthesis and stomatal conductance in coffee leaves. Physiologia Plantarum. 1998;102(3):343-350. doi:10.1034/j.1399-3054.1998.1020304.x

Demotes-Mainard S, Péron T, Corot A, Bertheloot J, Le Gourrierec J, Pelleschi-Travier S, et al. Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany. 2016;121:4-21. doi:10.1016/j.envexpbot.2015.05.010

Massa GD, Newsham G, Kim HH, Wheeler RM. Plant productivity in response to LED lighting in controlled environment agriculture. In: Lambers H, Ribas-Carbo M, editors. Plant respiration and internal oxygen: Methods and protocols. New York: Humana Press; 2014. p. 203-221.

Kozai T, Niu G, Takagaki M, editors. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production. 1st ed. Academic Press; 2015.

Benke K, Tomkins B. Future food-production systems: vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy. 2017;13(1):13-26.

Xiao Z, Lester GE, Luo Y, Wang Q. Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of Agricultural and Food Chemistry. 2012;60(31):7644-7651.

Pardossi A, Malorgio F, Incrocci L. Vertical farming: a new paradigm for horticulture? Acta Horticulturae. 2019;(1242): 29-36.

Dzakovich MP, Gomez C, Mitchell CA. Vertical farming for medicinal plants. HortScience. 2019;54(11):1975-1981.

Kozai T. Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory. Proceedings of the Japan Academy, Series B. 2013;89(10):447-461.

Li Y, Li T, Yang Q. Application of LED supplemental lighting for growth and development of several ornamental pot plants. Scientia Horticulturae. 2015;193:11-18.

Acquaah G. Principles of Plant Genetics and Breeding. 2nd ed. Wiley-Blackwell; 2012.

Wozniak A, Drabińska N, Klewicki R, Nowak J, Urban L, Klewicka E. The effect of light quality on the growth, yield and bioactive compound content of lettuce grown in a controlled environment. Folia Horticulturae. 2019;31(1):93-103.

Orsini F, Sanoubar R, Oztekin GB, et al. Improved stomatal regulation and ion partitioning boosts photosynthetic efficiency in grafted melon. Environmental and Experimental Botany. 2015;115:1-9.

Abdelrahman M, Al-Sadi AM, Pour-Aboughadareh A, Burritt DJ. Drought stress tolerance in plants: exploring the role of gene-based markers. In: Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Tran LSP, editors. Drought Stress Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives. Springer; 2016. p. 109-146.

Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J. Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants. 2019;8(2):34.

Gauthier L, Atanasova-Pénichon V, Chéreau S, Richard-Forget F. Metabolomics to decipher the chemical defense of cereals against Fusarium graminearum and deoxynivalenol accumulation. International Journal of Molecular Sciences. 2015;16(10):24839-24872.

Wulff BB, Moscou MJ. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Frontiers in Plant Science. 2014;5:692.

Khoshgoftarmanesh AH, Hosseini HM, Schulin R, Marcelis LFM. Trace element biofortification of wheat and barley: from soil to seed. In: Hossain MA, Kamiya T, Burritt DJ, Tran LSP, Fujiwara T, editors. Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants. Academic Press; 2018. p. 189-205.

Hajer AS, Malibari AA, Al-Zahrani HS. In vitro selection for salt tolerant date palm (Phoenix dactylifera L.) cell lines. Scientia Horticulturae. 2005;106(2):200-208.

Zamir D. Improving plant breeding with exotic genetic libraries. Nature Reviews Genetics. 2001;2(12):983-989.

Varshney RK, Terauchi R, McCouch SR. Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biology. 2014;12(6):e1001883.

Deschamps S, Llaca V, May GD. Genotyping-by-sequencing in plants. Biology. 2012;1(3):460-483.

Gavrilenko T, Antonova O, Shuvalova A, Kostina L, Khiutti A, Afanasenko O, Spooner DM. Application of molecular markers in the study of wild species and breeding of Solanum. Russian Journal of Genetics: Applied Research. 2012;2(2):138-147.

Collard BC, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences. 2008;363(1491):557-572.

Tuberosa R. Phenotyping for drought tolerance of crops in the genomics era. Frontiers in Physiology. 2012;3:347.

Gressel J, Hanafi A, Head G, Marasas W, Obilana AB, Ochanda J, Souissi T, Tzotzos G. Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Protection. 2004;23(8):661-689.

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821.

Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances. 2015;33(1):41-52.

Tanksley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild. Science. 1997;277(5329):1063-1066.

Maxted N, Kell S, Ford-Lloyd B, Dulloo E, Toledo Á. Toward the systematic conservation of global crop wild relative diversity. Crop Science. 2012;52(2):774-785.

Halewood M, Chiurugwi T, Hamilton RS, et al. Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution. New Phytologist. 2018;217(4):1407-1419.

Brush SB. Farmers' Bounty: Locating Crop Diversity in the Contemporary World. Yale University Press; 2004.

Louwaars NP, De Boef WS. Integrated seed sector development in Africa: a basis for seed policy and law. Journal of Crop Improvement. 2012;26(1):96-120.

Kloppenburg J. First the Seed: The Political Economy of Plant Biotechnology. 2nd ed. University of Wisconsin Press; 2004.

Wolt JD, Keese P, Raybould A, et al. Problem formulation in the environmental risk assessment for genetically modified plants. Transgenic Research. 2010;19(3):425-436.

McHughen A, Smyth S. US regulatory system for genetically modified (genetically modified organism (GMO), rDNA or transgenic) crop cultivars. Plant Biotechnology Journal. 2008;6(1):2-12.

Ceccarelli S, Grando S. Decentralized-participatory plant breeding: an example of demand driven research. Euphytica. 2007;155(3):349-360.

Almekinders CJ, Thiele G, Danial DL. Can cultivars from participatory plant breeding improve seed provision to small-scale farmers? Evidence from Honduras. Experimental Agriculture. 2007;43(4):431-447.

Sperling L, Ashby JA, Smith ME, Weltzien E, McGuire S. A framework for analyzing participatory plant breeding approaches and results. Euphytica. 2001;122(3):439-450.

Asfaw S, Lipper L. On-farm conservation of landrace diversity and the role of markets: a case study of teff production in Ethiopia. Environment and Development Economics. 2011;16(4):507-528.

Mudege NN, Mwanga ROM, Mdege N, Schulz S. The role of gender in orange-fleshed sweetpotato (OFSP) household field-level management in Malawi. International Journal of Agriculture and Biology. 2016;18(1):135-142.

Spielman DJ, Kennedy A. Towards better metrics and policymaking for seed system development: insights from Asia's seed industry. Agricultural Systems. 2016;147:111-122.

Halewood M, López Noriega I, Louafi S, editors. Crop Genetic Resources as a Global Commons: Challenges in International Law and Governance. Routledge; 2013.

Fowler C. The Svalbard Seed Vault and crop security. BioScience. 2008;58(3):190-191.

Alston JM, Pardey PG. Public funding for research into specialty crops. HortScience. 2008;43(5):1461-1470.

Pray CE, Nagarajan L. Improving agricultural productivity: how successful are public-private partnerships? International Food and Agribusiness Management Review. 2012;15(B):85-98.

Godfray HC, Beddington JR, Crute IR, et al. Food security: the challenge of feeding 9 billion people. Science. 2010;327(5967):812-818.

Kalantari F, Tahir OM, Lahijani AM, Kalantari S. A review of vertical farming technology: A guide for implementation of building integrated agriculture in cities. Advanced Engineering Forum. 2017;24:76-91.

Foley JA, Ramankutty N, Brauman KA, et al. Solutions for a cultivated planet. Nature. 2011;478(7369):337-342.

Aletta F, Van Renterghem T, Botteldooren D. An urban ecoacoustics assessment method for vertical greening applications. Science of The Total Environment. 2020;721:137686.

Puri V, Capineri C, Nayyar A. The future of vertical farming: An analysis of the economic feasibility of a hydroponic system. Acta Horticulturae. 2017;1189:431-438.

Kozai T, Niu G, Takagaki M, editors. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production. Academic Press; 2015.

Benke K, Tomkins B. Future food-production systems: vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy. 2017;13(1):13-26.

Pretty J, Bharucha ZP. Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects. 2015;6(1):152-182.

Orsini F, Dubbeling M, de Zeeuw H, Gianquinto G. Rooftop urban agriculture. In: Orsini F, Dubbeling M, de Zeeuw H, Gianquinto G, editors. Edible Cities: Urban Agriculture and the Future of Food Security. Springer International Publishing; 2021. p. 93-106.

Xu L, Baldocchi DD. Seasonal variation in the N2O emission and the denitrification potential of the vertical profile of a clayey soil. Journal of Geophysical Research: Atmospheres. 2004;109(D6).

Thomaier S, Specht K, Henckel D, et al. Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarming). Renewable Agriculture and Food Systems. 2015;30(1):43-54.

Kebreab E, Murdoch AJ, Owen E, Reynolds CK. Environmental impact of vertical farming systems. Agricultural Systems. 2021;190:103114.

McClintock N. Radical, reformist, and garden-variety neoliberal: coming to terms with urban agriculture's contradictions. Local Environment. 2014;19(2):147-171.

Mok H-F, Williamson VG, Grove JR, Burry K, Barker SF, Hamilton AJ. Strawberry fields forever? Urban agriculture in developed countries: a review. Agronomy for Sustainable Development. 2014;34(1):21-43.

Specht K, Siebert R, Hartmann I, et al. Urban agriculture of the future: an overview of sustainability aspects of food production in and on buildings. Agriculture and Human Values. 2014;31(1):33-51.

Grewal SS, Grewal PS. Can cities become self-reliant in food? Cities. 2012;29(1):1-11.

Pourias J, Duchemin E, Aubry C. Products from urban collective gardens: food for thought or for consumption? Insights from Paris and Montreal. Journal of Agriculture, Food Systems, and Community Development. 2016;6(2):137-154.

Cohen N, Reynolds K, Sanghvi R. Five borough farm: seeding the future of urban agriculture in New York City. Design Trust for Public Space. 2012. Available from: https://designtrust.org/projects/five-borough-farm/

Downloads

Published

2024-01-15

Issue

Section

Review Articles

How to Cite

Vertical Farming and Urban Agriculture: A Review of the Current State and Future Prospects in Crop Production. (2024). International Journal of Research and Advances in Agricultural Sciences, 2(4), 52-70. https://doi.org/10.8726/3vkwjm55

Similar Articles

1-10 of 43

You may also start an advanced similarity search for this article.