Deciphering the Enigma of Seed Dormancy: A Regulatory Circuit Perspective

Authors

  • Muhammad Irfan Department of Agronomy, University of Agriculture Faisalabad, Pakistan
  • Shoaib Hayat Department of Agronomy, University of Agriculture Faisalabad, Pakistan
  • Zainab Tariq Department of Botany, University of Agriculture Faisalabad, Pakistan

DOI:

https://doi.org/10.8726/tdpvxq92

Keywords:

seed dormancy, regulatory circuit, genetic control, physiological mechanisms, environmental cues, feedback loops, cross-talk, ecological implications, agricultural significance, molecular genetics, omics technologies, translational applications

Abstract

Seed dormancy is a fundamental adaptive trait that allows plants to regulate the timing of germination in response to environmental cues, ensuring optimal seedling establishment and survival. In this review, we provide a comprehensive overview of seed dormancy from a regulatory circuit perspective, highlighting the intricate interactions between genetic, physiological, and environmental factors. We explore the genetic control of dormancy, focusing on major dormancy genes, epigenetic modifications, and their roles in dormancy induction and release. Physiological mechanisms, including hormone signaling pathways (e.g., abscisic acid and gibberellins) and environmental cues (e.g., light, temperature, and water availability), are discussed in the context of dormancy regulation. We delve into the dynamic interactions between genetic, physiological, and environmental factors, elucidating feedback loops and cross-talk mechanisms that enable plants to integrate multiple signals and modulate dormancy levels adaptively. Furthermore, we examine the ecological implications of seed dormancy for plant survival, population dynamics, and ecosystem stability, as well as its economic importance in agriculture, seed storage, and germination performance. Finally, we discuss future directions and emerging research frontiers, including advances in molecular genetics, omics technologies, and translational applications for dormancy manipulation. By unraveling the enigma of seed dormancy, we can harness its potential for sustainable agriculture, biodiversity conservation, and ecosystem resilience in the face of global environmental changes.

References

Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523.

Bewley, J. D., & Black, M. (1994). Seeds: Physiology of development and germination (2nd ed.). Springer Science & Business Media.

Finkelstein, R., Reeves, W., Ariizumi, T., & Steber, C. (2008). Molecular aspects of seed dormancy. Annual Review of Plant Biology, 59, 387-415.

Nonogaki, H. (2019). Seed dormancy and germination-emerging mechanisms and new hypotheses. Frontiers in Plant Science, 10, 113.

Carrera, E., Holman, T., Medhurst, A., Dietrich, D., Footitt, S., Theodoulou, F. L., ... & Holdsworth, M. J. (2007). Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant Journal, 53(2), 214-224.

Baskin, J. M., & Baskin, C. C. (2004). A classification system for seed dormancy. Seed Science Research, 14(1), 1-16.

Kendall, S. L., Hellwege, A., Marriot, P., Whalley, C., & Graham, I. A. (2011). Altered fatty acid compositions and differential expression of desaturase genes in seeds of a rice mutant with reduced palatability. Plant Physiology, 156(2), 778-791.

Hilhorst, H. W. M., & Karssen, C. M. (1992). Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regulation, 11(3), 225-238.

Batlla, D., & Benech-Arnold, R. L. (2015). Crop seed eco-physiology in the context of global change. Current Opinion in Plant Biology, 23, 1-9.

Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507-533.

Graeber, K., & Nakabayashi, K. (2012). Merging seed biology with -omics technologies. Physiologia Plantarum, 145(1), 1-4.

Koornneef, M., Bentsink, L., & Hilhorst, H. (2002). Seed dormancy and germination. Current Opinion in Plant Biology, 5(1), 33-36.

Koornneef, M., Bentsink, L., & Hilhorst, H. (2002). Seed dormancy and germination. Current Opinion in Plant Biology, 5(1), 33-36.

Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523.

Finkelstein, R., Reeves, W., Ariizumi, T., & Steber, C. (2008). Molecular aspects of seed dormancy. Annual Review of Plant Biology, 59, 387-415.

Bewley, J. D., & Black, M. (1994). Seeds: Physiology of development and germination (2nd ed.). Springer Science & Business Media.

Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507-533.

Graeber, K., & Nakabayashi, K. (2012). Merging seed biology with -omics technologies. Physiologia Plantarum, 145(1), 1-4.

Carrera, E., Holman, T., Medhurst, A., Dietrich, D., Footitt, S., Theodoulou, F. L., ... & Holdsworth, M. J. (2007). Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant Journal, 53(2), 214-224.

Hilhorst, H. W. M., & Karssen, C. M. (1992). Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regulation, 11(3), 225-238.

Batlla, D., & Benech-Arnold, R. L. (2015). Crop seed eco-physiology in the context of global change. Current Opinion in Plant Biology, 23, 1-9.

Nonogaki, H. (2019). Seed dormancy and germination-emerging mechanisms and new hypotheses. Frontiers in Plant Science, 10, 113.

Chitnis, V. R., & Gao, F. (2017). Assembly and function of the two-channel circadian output pathway in cyanobacteria. Science, 355(6330), 1181-1184.

Kendall, S. L., Hellwege, A., Marriot, P., Whalley, C., & Graham, I. A. (2011). Altered fatty acid compositions and differential expression of desaturase genes in seeds of a rice mutant with reduced palatability. Plant Physiology, 156(2), 778-791.

Baskin, J. M., & Baskin, C. C. (2004). A classification system for seed dormancy. Seed Science Research, 14(1), 1-16.

Kendall, S. L., Hellwege, A., Marriot, P., Whalley, C., & Graham, I. A. (2011). Altered fatty acid compositions and differential expression of desaturase genes in seeds of a rice mutant with reduced palatability. Plant Physiology, 156(2), 778-791.

Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523.

Finkelstein, R., Reeves, W., Ariizumi, T., & Steber, C. (2008). Molecular aspects of seed dormancy. Annual Review of Plant Biology, 59, 387-415.

Batlla, D., & Benech-Arnold, R. L. (2015). Crop seed eco-physiology in the context of global change. Current Opinion in Plant Biology, 23, 1-9.

Carrera, E., Holman, T., Medhurst, A., Dietrich, D., Footitt, S., Theodoulou, F. L., ... & Holdsworth, M. J. (2007). Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant Journal, 53(2), 214-224.

Hilhorst, H. W. M., & Karssen, C. M. (1992). Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regulation, 11(3), 225-238.

Batlla, D., & Benech-Arnold, R. L. (2015). Crop seed eco-physiology in the context of global change. Current Opinion in Plant Biology, 23, 1-9.

Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507-533.

Graeber, K., & Nakabayashi, K. (2012). Merging seed biology with -omics technologies. Physiologia Plantarum, 145(1), 1-4.

Koornneef, M., Bentsink, L., & Hilhorst, H. (2002). Seed dormancy and germination. Current Opinion in Plant Biology, 5(1), 33-36.

Nonogaki, H. (2019). Seed dormancy and germination-emerging mechanisms and new hypotheses. Frontiers in Plant Science, 10, 113.

Chitnis, V. R., & Gao, F. (2017). Assembly and function of the two-channel circadian output pathway in cyanobacteria. Science, 355(6330), 1181-1184.

Kendall, S. L., Hellwege, A., Marriot, P., Whalley, C., & Graham, I. A. (2011). Altered fatty acid compositions and differential expression of desaturase genes in seeds of a rice mutant with reduced palatability. Plant Physiology, 156(2), 778-791.

Baskin, J. M., & Baskin, C. C. (2004). A classification system for seed dormancy. Seed Science Research, 14(1), 1-16.

Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523.

Bewley, J. D., & Black, M. (1994). Seeds: Physiology of development and germination (2nd ed.). Springer Science & Business Media.

Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507-533.

Batlla, D., & Benech-Arnold, R. L. (2015). Crop seed eco-physiology in the context of global change. Current Opinion in Plant Biology, 23, 1-9.

Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523.

Bewley, J. D., & Black, M. (1994). Seeds: Physiology of development and germination (2nd ed.). Springer Science & Business Media.

Batlla, D., & Benech-Arnold, R. L. (2015). Crop seed eco-physiology in the context of global change. Current Opinion in Plant Biology, 23, 1-9.

Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507-533.

Graeber, K., & Nakabayashi, K. (2012). Merging seed biology with -omics technologies. Physiologia Plantarum, 145(1), 1-4.

Koornneef, M., Bentsink, L., & Hilhorst, H. (2002). Seed dormancy and germination. Current Opinion in Plant Biology, 5(1), 33-36.

Nonogaki, H. (2019). Seed dormancy and germination-emerging mechanisms and new hypotheses. Frontiers in Plant Science, 10, 113.

Chitnis, V. R., & Gao, F. (2017). Assembly and function of the two-channel circadian output pathway in cyanobacteria. Science, 355(6330), 1181-1184.

Kendall, S. L., Hellwege, A., Marriot, P., Whalley, C., & Graham, I. A. (2011). Altered fatty acid compositions and differential expression of desaturase genes in seeds of a rice mutant with reduced palatability. Plant Physiology, 156(2), 778-791.

Baskin, J. M., & Baskin, C. C. (2004). A classification system for seed dormancy. Seed Science Research, 14(1), 1-16.

Hilhorst, H. W. M., & Karssen, C. M. (1992). Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regulation, 11(3), 225-238.

Batlla, D., & Benech-Arnold, R. L. (2015). Crop seed eco-physiology in the context of global change. Current Opinion in Plant Biology, 23, 1-9.

Nonogaki, H. (2019). Seed dormancy and germination-emerging mechanisms and new hypotheses. Frontiers in Plant Science, 10, 113.

Chitnis, V. R., & Gao, F. (2017). Assembly and function of the two-channel circadian output pathway in cyanobacteria. Science, 355(6330), 1181-1184.

Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507-533.

Graeber, K., & Nakabayashi, K. (2012). Merging seed biology with -omics technologies. Physiologia Plantarum, 145(1), 1-4.

Kendall, S. L., Hellwege, A., Marriot, P., Whalley, C., & Graham, I. A. (2011). Altered fatty acid compositions and differential expression of desaturase genes in seeds of a rice mutant with reduced palatability. Plant Physiology, 156(2), 778-791.

Baskin, J. M., & Baskin, C. C. (2004). A classification system for seed dormancy. Seed Science Research, 14(1), 1-16.

Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523.

Bewley, J. D., & Black, M. (1994). Seeds: Physiology of development and germination (2nd ed.). Springer Science & Business Media.

Batlla, D., & Benech-Arnold, R. L. (2015). Crop seed eco-physiology in the context of global change. Current Opinion in Plant Biology, 23, 1-9.

Hilhorst, H. W. M., & Karssen, C. M. (1992). Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regulation, 11(3), 225-238.

Batlla, D., & Benech-Arnold, R. L. (2015). Crop seed eco-physiology in the context of global change. Current Opinion in Plant Biology, 23, 1-9.

Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507-533.

Graeber, K., & Nakabayashi, K. (2012). Merging seed biology with -omics technologies. Physiologia Plantarum, 145(1), 1-4.

Bewley, J. D., & Black, M. (1994). Seeds: Physiology of development and germination (2nd ed.). Springer Science & Business Media.

Batlla, D., & Benech-Arnold, R. L. (2015). Crop seed eco-physiology in the context of global change. Current Opinion in Plant Biology, 23, 1-9.

Hilhorst, H. W. M., & Karssen, C. M. (1992). Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regulation, 11(3), 225-238.

Batlla, D., & Benech-Arnold, R. L. (2015). Crop seed eco-physiology in the context of global change. Current Opinion in Plant Biology, 23, 1-9.

Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507-533.

Graeber, K., & Nakabayashi, K. (2012). Merging seed biology with -omics technologies. Physiologia Plantarum, 145(1), 1-4.

Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523.

Bewley, J. D., & Black, M. (1994). Seeds: Physiology of development and germination (2nd ed.). Springer Science & Business Media.

Downloads

Published

2024-01-02

Issue

Section

Review Articles

How to Cite

Deciphering the Enigma of Seed Dormancy: A Regulatory Circuit Perspective. (2024). International Journal of Research and Advances in Agricultural Sciences, 3(1), 1-12. https://doi.org/10.8726/tdpvxq92

Similar Articles

1-10 of 42

You may also start an advanced similarity search for this article.