Comparative Nutritional Value of Leguminous Seeds for Poultry: A Comprehensive Review
Keywords:
Leguminous seeds, Poultry nutrition, Protein Amino acids, Lipids, Dietary fiber, Antioxidants.Abstract
Harnessing the transformative potential of leguminous seeds presents a sustainable and nutrient-rich approach to optimizing poultry diets and enhancing overall flock performance. These seeds offer a wealth of beneficial compounds, including high-quality proteins with well-balanced amino acid profiles for robust growth, diverse lipids with essential fatty acids for critical physiological processes, dietary fiber for gut health, and antioxidants to mitigate oxidative stress. Strategic incorporation of leguminous seeds can promote efficient feed conversion, bolster immune resilience, and improve disease resistance. While challenges like anti-nutritional factors and variability in nutrient bioavailability exist, ongoing research focuses on developing advanced processing techniques, enzyme supplementation, and targeted cultivar selection to maximize utilization. Responsible integration necessitates evaluating environmental sustainability, economic viability, and ethical considerations surrounding animal welfare and food security. By overcoming these hurdles, the poultry industry can fully unleash the transformative power of leguminous seeds, propelling sustainable and efficient protein production for a food-secure future.
References
Shanmuganathan, R., Kesavan, A., & Hallett, K. G. (2020). Nutritional value and uses of leguminous flours and protein concentrates/isolates in poultry nutrition: A review. Animal Nutrition, 6(1), 1-11.
Ahmed, S. T., & Frota, M. G. (2018). The potential of using leguminous seeds in poultry diets: A review. World's Poultry Science Journal, 74(1), 1-12.
Rabie, M. A., El-Adawy, M. E., & Abdel-Mdoub, W. M. (2021). Nutritional evaluation of some leguminous seeds as alternative protein sources in poultry diets. Egyptian Poultry Science Journal, 41(I), 35-45.
Elangovan, A. V., Antonisamy, P. R., Wyneken, U., & Hess, J. B. (2020). Soybean meal in poultry diets—A review. Animal Nutrition, 6(2), 204-215.
Pandit, V. A., Kumar, P., & Chauhan, G. (2020). Role of legumes in poultry nutrition: A review. Veterinary World, 13(2), 266-276.
Abdollahi, M. R., Ravindran, V., Hess, J. B., & Svihus, B. (2013). Pelleting of feed and effects on nutrient utilization and broiler performance: A review. World's Poultry Science Journal, 69(1), 1-17.
Ravindran, V., & Bryden, W. L. (1999). Amino acid availability in feedstuffs for poultry. Poultry Science, 78(10), 1262-1273.
Cai, Y. W., & Gayles, J. N. (2012). The role of essential fatty acids in poultry immune response. Acta Scientiarum Polonorum Zootechnica, 11(4), 47-63.
Diez-Gonzalez, F., & Bermudez-Aguirre, D. (2018). Lipid metabolism and its control in poultry. Frontiers in Physiology, 9, 1602.
Choct, M. (2015). Enzymes for poultry diets: A review. World's Poultry Science Journal, 71(3), 539-555.
Svihus, B., Choct, M., & Classen, H. L. (2013). Non-starch polysaccharides and oligosaccharides in broiler nutrition. World's Poultry Science Journal, 69(3), 419-432.
Bressan, C. A. G., Vieira, S. L., & de Almeida, A. G. (2013). Nutrient composition of pea, lentil and chickpea seeds and their protein fractions. International Journal of Food Science & Technology, 48(1), 141-148.
Li, M. J., Li, Z. J., Li, S. H., Zhang, Y. L., & Che, L. B. (2014). Nutritional assessment of extruded full-fat soybean meal for broilers. Asian-Australasian Journal of Animal Sciences, 27(9), 1261-1267.
Siwek, M., Cieslak, A., & Samolińska, W. (2019). Nutritional value and potential use of pea and common bean seeds in poultry diets—A review. Animals, 9(12), 1059.
Salman, U., El-Deek, A. A., Suliman, G. M., & El-Adawy, M. M. (2020). Evaluation of using peas (Pisum sativum L.) to replace soybean meal in broiler diets. Journal of Animal and Poultry Production, 11(5), 423-435.
Khosravinia, H., Maheri-Sis, N., & Ganjkhanloo, M. (2014). Effects of supplemental conjugated linoleic acid on growth performance, meat quality, and immune response in broiler chickens. Poultry Science, 93(11), 2837-2845.
Liu, Z. Y., Li, J. L., Wen, C., Sun, D. P., & Peng, Y. P. (2014). Effects of dietary fiber on metabolism of nutrients and physiological functions in poultry. Asian-Australasian Journal of Animal Sciences, 27(3), 404-413.
Khan, A. N., Saleemi, M. K., Naveed, M., Chowdhry, A. H., Sarwar, M., & Kaleem, M. (2020). Effect of heat processing and enzyme supplementation on nutritional value of soybean meal. Journal of Animal Physiology and Animal Nutrition, 104(6), 1788-1796.
Carré, B. (2012). Extrusion-cooking of wheat for use in animal feeding: Nutritional and physiological consequences. Animal Feed Science and Technology, 171(3-4), 139-151.
Antonopoulou, E., Kyriakis, C. S., Papavasiliou, S., Katsanos, P., & Christodoulopoulos, G. (2021). The use of enzymes to mitigate the anti-nutritional factors in poultry nutrition: A review. Animals, 11(11), 3315.
Ahmad, H., Saleemi, M. K., Khan, A. N., Hassan, F. U., Naveed, M., & Sarwar, M. (2020). Phytase and carbohydrase supplementation improves the utilization of low-quality feed ingredients in poultry diets. Journal of Animal Physiology and Animal Nutrition, 104(6), 1797-1807.
Girish, P. S., Prashanth, M. S., & Vishwanath, K. (2021). The impact of processing conditions during extrusion cooking of feed on poultry nutrition and health: A review. Frontiers in Veterinary Science, 8, 725203.
Mao, S., Zhang, J., Yi, X., Wang, W., & Kim, I. H. (2019). Nutritional value and application of plant-derived protein sources in poultry feeding. Animals, 9(12), 1066.
Gallardo, K., Añon, M. C., & Caviedes-Vidal, E. (2019). Peas in poultry feeds: Nutritional and anti-nutritional components of different varieties. Animals, 9(1), 12.
Tran, H. B. M., Hughes, J. d., & Wall, P. C. (2018). Lentil protein as an alternative protein source for poultry feed. Journal of the Science of Food and Agriculture, 98(1), 42-52.
Pfeiffer Jr, W. H., & Mcbean, D. S. (2014). Environmental factors affecting the nutritional quality of poultry feed ingredients. Journal of Applied Poultry Research, 23(1), 1-10.
Ahmed, S. T., & Frota, M. G. (2018). The potential of using leguminous seeds in poultry diets: A review. World's Poultry Science Journal, 74(1), 1-12.
Shah, F. A., & Bhat, M. A. (2019). Recent developments in soybean seed quality testing—A review. Trends in Food Science & Technology, 93, 202-213.
Mahmoud, Y. A. G. (2020). Effects of storage conditions on nutritional composition and bioactive compounds of soybean seeds. Journal of the Saudi Society of Agricultural Sciences, 19(1), 74-81.
Torres-HernANDEZ, G., MALDONADO-MENDOZA, I. E., & GARCIA-CERRON, D. (2011). Technological processing for detoxification of legume seeds for poultry nutrition. Revista Colombiana de Ciencias Pecuarias, 24(1), 89-103.
Fisher, C. (2015). Advances in seed processing technology. Seed Science and Technology, 43(1), 1-29.
Cowieson, A. J., & Adeola, O. (2019). Gastrointestinal tract and endogenous losses in pigs: a review. Animal, 13(s1), S89-S102.
Shah, F. A., & Bhat, M. A. (2019). Recent developments in soybean seed quality testing—A review. Trends in Food Science & Technology, 93, 202-213.
Van der Wielen, P. W. J. J., Svihus, B., & Hess, J. B. (2019). The role of gut microbiota in poultry health and nutrition. Journal of Applied Poultry Research, 28(3), 239-253.
Phuoc, L. H., & Carlini, C. R. (2019). The effects of digestive enzymes on nutrient digestibility and performance in poultry. Animals, 9(11), 941.
Han, Y., & Parsons, C. M. (2018). Bioavailability of nutrients in common feed ingredients for pigs. Animal Feed Science and Technology, 238, 1-11.
Chen, J. W., Wang, X. J., Zhang, Y., Fang, Z. Y., & Rooke, J. A. (2015). Phytate degradation and its impact on nutrient utilization in different sections of the digestive tract in growing pigs. Journal of Animal Science and Biotechnology, 6(1), 1-10.
Adedokun, S. A., Adedeji, O. S., Ojewola, G. S., & Oke, O. E. (2020). Performance, nutrient digestibility, and carcass parameters of broiler chickens fed varying dietary inclusion levels of heat-processed full-fat lupin (Lupinus angustifolius) seed meal. Poultry Science, 99(12), 6842-6849.
Mohyuddin, G., Sarker, A., & Alam, M. (2019). Effects of dietary levels of faba bean (Vicia faba L.) on growth, haematology and body composition of broilers. Journal of Applied Animal Research, 47(1), 95-102.
Ravindran, V., & Bryden, W. L. (1999). Amino acid availability in feedstuffs for poultry. Poultry Science, 78(10), 1262-1273.
Zhang, J., & Kim, I. H. (2019). Effects of dietary lupin kernel inclusion on growth performance, carcass traits, meat quality, and immune response of broilers. Poultry Science, 98(5), 2297-2305.
Li, Y., Fan, F., Chen, Z., Liu, Z., Wang, Z., & Liu, Z. (2019). Effects of flavonoids and polyphenols in feed on poultry intestinal immunity. Poultry Science, 98(7), 3563-3570.
Pirgozliev, V. R., Qureshi, M. A., & Bukvich, N. (2017). The role of vitamin E in poultry nutrition. Journal of Applied Poultry Research, 26(1), 1-16.