Genetic Determination of Resistance to Gastrointestinal Nematodes in Sheep: Parameter Estimation For Breeding Strategies
Keywords:
candidate genes, genomics, genome-wide association study, gastrointestinal nematodes, sheep, quantitative trait lociAbstract
Gastrointestinal nematodes (GIN) pose a significant threat to sheep production, leading to economic losses and animal welfare concerns. The widespread emergence of anthelmintic resistance has highlighted the urgent need for alternative control strategies. Breeding for genetic resistance to GIN offers a sustainable and long-term solution. This review explores the genetic basis of resistance in sheep, focusing on the critical role of parameter estimation for informing effective breeding strategies. We discuss the complex interplay of host-parasite interactions, the genetic architecture of resistance, and the challenges and opportunities associated with estimating heritability and genetic correlations. Advancements in genomic technologies, including QTL mapping, candidate gene analysis, and GWAS, have provided valuable insights into the genetic basis of resistance. Genomic selection (GS) offers a promising approach for accelerating genetic progress by enabling more accurate and earlier selection of animals with superior genetic merit. However, effective breeding programs require an integrated approach that combines genetic selection with appropriate environmental management practices. Future research should focus on developing innovative technologies, such as CRISPR-Cas9 gene editing, next-generation sequencing, and functional genomics approaches, to further enhance GIN resistance. Collaboration between researchers, breeders, and producers is essential for translating scientific knowledge into practical applications, promoting sustainable and resilient livestock production systems, and ensuring the long-term health and profitability of the sheep industry.
References
McLeod, R. S. (1995). Costs of major parasites to the Australian livestock industries. International Journal for Parasitology, 25(11), 1363-1367.
Miller, J. E., Kaplan, R. M., & Pugh, D. G. (2012). Sheep and goat medicine (3rd ed.). Elsevier Health Sciences.
Kaplan, R. M. (2001). Drug resistance in nematodes of veterinary importance: A status report. Trends in Parasitology, 17(10), 474-479.
Bishop, S. C. (2012). Possibilities to breed for resistance to nematode parasite infections in small ruminants in tropical production systems. Animal, 6(6), 741-747.
Karrow, N. A. (2006). Breeding sheep for resistance to internal parasites. Worm control for small ruminants in North America (ACSRPC).
Marshall, K., Mugambi, J. M., Nagda, S., Sonstegard, T. S., Van Tassell, C. P., Baker, R. L., & Gibson, J. P. (2013). Quantitative trait loci for resistance to Haemonchus contortus artificial challenge in Red Maasai and Dorper sheep of East Africa. Animal Genetics, 44(3), 285-295.
Beraldi, D., McRae, A. F., Gratten, J., Pilkington, J. G., Slate, J., Visscher, P. M., & Pemberton, J. M. (2007). Quantitative trait loci (QTL) mapping of resistance to strongyles and coccidia in the free-living Soay sheep (Ovis aries). International Journal for Parasitology, 37(2), 121-129.
Seyednasrollah, F., Abo-Ismail, M. K., & Ghaderi-Zefrehei, M. (2018). A review on sheep breeding strategies for resistance to gastrointestinal nematodes. Journal of Helminthology, 92(1), 1-10.
Becker, G. M., Davenport, K. M., Burke, J. M., Lewis, R. M., Miller, J. E., Morgan, J. L. M., ... & Murdoch, B. M. (2020). Genome-wide association study to identify genetic loci associated with gastrointestinal nematode resistance in Katahdin sheep. Animal Genetics, 51(4), 330-335.
Berton, M. P., de Oliveira Silva, R. M., Peripolli, E., Stafuzza, N. B., Martin, J. F., Álvarez, M. S., ... & Oliveira, P. S. (2017). Genomic regions and pathways associated with gastrointestinal parasites resistance in Santa Inês breed adapted to tropical climate. Journal of Animal Science and Biotechnology, 8(1), 73.
Al Kalaldeh, M., Daetwyler, H. D., & McEwan, J. C. (2017). A genome-wide association study reveals novel loci for internal parasite resistance in Australian Merino sheep. BMC Genomics, 18(1), 1-13.
Riggio, V., Pong-Wong, R., Sallé, G., Usai, M. G., Moreno, C. R., Mura, M. C., ... & Archibald, A. L. (2013). A combined linkage and genome-wide association study in sheep reveals a major QTL associated with variation in resistance to internal parasites. BMC Genomics, 14(1), 1-13.
Khusro, M., Van Der Werf, J. H. J., Brown, D. J., & Ball, A. (2004). Across flock (co) variance components for faecal worm egg count, live weight, and fleece traits for Australian Merinos. Livestock Production Science, 91(1), 35-43.
Hayward, A. D. (2022). Genetic parameters for resistance to gastrointestinal nematodes in sheep: A meta-analysis. International Journal for Parasitology, 52(8), 843-853.
Pickering, N. K., Auvray, B., Dodds, K. G., & McEwan, J. C. (2015). Genomic prediction and genome-wide association study for dagginess and host internal parasite resistance in New Zealand sheep. BMC Genomics, 16(1), 958.
Boareki, M., Schenkel, F., Kennedy, D., & Cánovas, A. (2021). Prediction of genetic resistance for scrapie in ungenotyped sheep using a linear animal model. Genes, 12(11), 1432.
Sallé, G., Deiss, V., Marquis, C., Tosser-Klopp, G., Cortet, J., Serreau, D., ... & Jacquiet, P. (2021). Genetic × Environment variation in sheep lines bred for divergent resistance to strongyle infection. Evolutionary Applications, 14(13), 2591-2602.
Bishop, S. C. (2012). A consideration of resistance and tolerance for ruminant nematode infections. Frontiers in Genetics, 3, 168.
Estrada-Reyes, Z. M., Rae, O., Postley, C., Jiménez Medrano, M. B., Leal Gutiérrez, J. D., & Mateescu, R. G. (2019). Association study reveals Th17, Treg, and Th2 loci related to resistance to Haemonchus contortus in Florida Native sheep1. Journal of Animal Science, 97(11), 4428-4444.
Estrada-Reyes, Z. M., Tsukahara, Y., Goetsch, A. L., Gipson, T. A., Sahlu, T., Puchala, R., & Mateescu, R. G. (2019). Association analysis of immune response loci related to Haemonchus contortus exposure in sheep and goats using a targeted approach. Livestock Science, 228, 109-119.
Carracelas, B., Navajas, E. A., Vera, B., & Ciappesoni, G. (2022). Genome-wide association study of parasite resistance to gastrointestinal nematodes in Corriedale sheep. Genes, 13(9), 1548.
Ingham, A., Reverter, A., Windon, R., Hunt, P., & Menzies, M. (2008). Gastrointestinal nematode challenge induces some conserved gene expression changes in the gut mucosa of genetically resistant sheep. International Journal for Parasitology, 38(5), 431-442.
Sayers, G., & Sweeney, T. (2005). Gastrointestinal nematode infection in sheep: A review of the alternatives to anthelmintics in parasite control. Animal Health Research Reviews, 6(1), 159-171.
Stear, M. J., Doligalska, M., Donskow-Łysoniewska, K., LaCourse, E. J., & Morgan, E. R. (2014). Towards sustainable parasite control in ruminants: Perspectives from a workshop in Poland. Veterinary Parasitology, 204(1-2), 1-7.
Coltman, D. W., Pilkington, J. G., Smith, J. A., & Pemberton, J. M. (2001). Parasite-mediated selection and evolution in a natural population of Soay sheep. Evolution, 55(9), 1659-1670.
Schwaiger, F. W., Gostomski, D., Stear, M. J., Duncan, J. L., & McKellar, Q. A. (1995). The role of immune responses in the control of gastrointestinal nematode infections in ruminants. International Journal for Parasitology, 25(11), 1331-1343.
Behnke, J. M., Barnard, C. J., & Wakelin, D. (1992). Understanding helminth infections: The immune system and parasite evasion. Parasitology Today, 8(11), 346-352.
Matika, O., Gondwe, T. N., Munyeme, M., Mulindwa, H., Chimonyo, M., & Dzama, K. (2012). Meta-analysis of the heritability of faecal egg count and live weight in indigenous sheep of South Africa. South African Journal of Animal Science, 42(3), 227-234.
Sayers, G., & Sweeney, T. (2005). Gastrointestinal nematode infection in sheep: A review of the alternatives to anthelmintics in parasite control. Animal Health Research Reviews, 6(1), 159-171.
Falconer, D. S., & Mackay, T. F. (1996). Introduction to quantitative genetics (4th ed.). Longman.
Safari, E., Fogarty, N. M., Gilmour, A. R., Atkins, K. D., & Mortimer, S. I. (2005). Genetic and phenotypic parameters for parasite resistance and other production traits in Coopworth lambs. Animal Science, 81(1), 135-148.
Bishop, S. C., Morris, C. A., Squire, G. R., & Pandey, V. S. (2004). A comparison of genetic parameters for resistance to nematode infections in three sheep breeds. Animal Science, 78(3), 347-354.
Stear, M. J., Bishop, S. C., Doligalska, M., Duncan, J. L., Holmes, P. H., Jackson, F., ... & Strain, S. (2006). Regulation of egg production, worm burden, worm length and worm fecundity by host responses in sheep infected with Ostertagia circumcincta. Parasite Immunology, 28(1-2), 65-72.
Albers, G. A., Gray, G. D., Piper, L. R., Barker, J. S., Le Jambre, L. F., & Barger, I. A. (1987). The genetics of resistance and resilience to Haemonchus contortus infection in young merino sheep. International Journal for Parasitology, 17(4), 455-463.
Morris, C. A., Wheeler, M., Watson, T. G., Hosking, B. C., & Leathwick, D. M. (2000). Direct and correlated responses to selection for faecal nematode egg count in Perendale sheep. New Zealand Journal of Agricultural Research, 43(4), 419-428.
Van Der Werf, J. H., & Kinghorn, B. P. (1991). Economics of breeding for resistance to internal parasites in sheep. Agricultural Systems, 36(4), 339-355.
Woolaston, R. R., & Baker, R. L. (1996). Prospects of breeding sheep for resistance to internal parasites. International Journal for Parasitology, 26(8-9), 845-855.
Bisset, S. A., Morris, C. A., McEwan, J. C., & Vlassoff, A. (1996). Breeding sheep for resistance to internal parasites: Progress, problems and prospects. New Zealand Journal of Zoology, 23(4), 337-347.
Mrode, R. A. (2014). Linear models for the prediction of animal breeding values (3rd ed.). Cabi.
Van Der Werf, J. H. (2008). Selection for worm resistance: An Australian perspective. Animal, 2(6), 748-756.
Amer, P. R. (2006). Breeding animals for resistance to parasites. Animal Health Research Reviews, 7(1), 137-143.
Daetwyler, H. D., Villanueva, B., & Woolliams, J. A. (2008). Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One, 3(10), e3395.
Hazell, P., & Morris, C. A. (1993). Selection indexes for internal parasite resistance in sheep: A review. New Zealand Journal of Zoology, 20(3), 241-248.
Baker, R. L., Nagda, S., Rodriguez-Zas, S. L., & Southey, B. R. (2010). Selection indexes for breeding sheep resistant to gastrointestinal nematodes. Animal Production Science, 50(12), 1022-1028.
Meuwissen, T. H., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829.
Hayes, B. J., Bowman, P. J., Chamberlain, A. J., & Goddard, M. E. (2009). Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science, 92(2), 433-443.
Dekkers, J. C. (2004). Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. Journal of Animal Science, 82(13_suppl), E313-E328.
Van Eenennaam, A. L., Dekkers, J. C., & Muir, W. M. (2014). Genetic strategies for controlling infectious diseases in livestock populations. Frontiers in Genetics, 5, 269.
Heidaritabar, M., Sargolzaei, M., & Schenkel, F. S. (2014). Combined use of genomic and pedigree information to improve accuracy of genomic prediction. Journal of Dairy Science, 97(12), 7611-7620.
Sargolzaei, M., Chesnais, J., & Schenkel, F. (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15(1), 1-14.
Van Eenennaam, A. L., Dekkers, J. C., & Muir, W. M. (2014). Genetic strategies for controlling infectious diseases in livestock populations. Frontiers in Genetics, 5, 269.
Waller, P. J. (2006). Sustainable nematode parasite control strategies for grazing ruminants. Animal Health Research Reviews, 7(1), 145-153.
Barger, I. A. (1993). Influence of grazing management on the control of gastrointestinal parasites of sheep. International Journal for Parasitology, 23(2), 267-273.
Niezen, J. H., Charleston, W. A., Hodgson, J., Robertson, H. A., & Shelton, D. (1998). The effect of supplementation with condensed tannins from sulla (Hedysarum coronarium) or chicory (Cichorium intybus) on lamb parasite burdens. Veterinary Parasitology, 78(1), 13-21.
Coop, R. L., & Kyriazakis, I. (1999). Nutrition-parasite interaction. Veterinary Parasitology, 84(3-4), 187-204.
Houdijk, J. G., Athanasiadou, S., & Kyriazakis, I. (2005). Amino acids offered at the duodenum of sheep can affect the establishment of, and the immune response to, Teladorsagia circumcincta. Parasitology, 131(2), 187-198.
Knox, D. P., & Steel, J. W. (1999). The effect of zinc supplementation on the immune response of young lambs infected with the intestinal nematode parasite Trichostrongylus colubriformis. Veterinary Parasitology, 83(3-4), 285-297.
Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.
Crispo, M., Mulet, A. P., Tesson, L., Barrera, N., Cuadro, F., dos Santos Silva, R. M., ... & Ventura, M. (2015). Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One, 10(8), e0136690.
Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333-351.
Sayers, G., & Sweeney, T. (2005). Gastrointestinal nematode infection in sheep: A review of the alternatives to anthelmintics in parasite control. Animal Health Research Reviews, 6(1), 159-171.